The emerging dynamic dimensions of the human intestinal microbiota (IM) are challenging the traditional definition of healthy gut microbiota, principally based on the static concepts of phylogenetic and functional core. On the other hand, recent researches are revealing that the microbiota plasticity is strategic for several aspects of our biology, addressing the different immunological and metabolic needs at various ages, and adjusting the ecosystem services in response to different lifestyle, physiological states or diets. In light of these studies, we propose to revise the traditional concept of healthy human IM, including its degree of plasticity among the fundamental requisites for providing host health.
View Article and Find Full Text PDFScope: Fibers and prebiotics represent a useful dietary approach for modulating the human gut microbiome. Therefore, aim of the present study was to investigate the impact of four flours (wholegrain rye, wholegrain wheat, chickpeas and lentils 50:50, and barley milled grains), characterized by a naturally high content in dietary fibers, on the intestinal microbiota composition and metabolomic output.
Methods And Results: A validated three-stage continuous fermentative system simulating the human colon was used to resemble the complexity and diversity of the intestinal microbiota.
IBS is a prevalent functional gastrointestinal disorder, in which the microbiota has been demonstrated to play a role. An increasing number of studies have suggested how probiotics may alleviate IBS symptoms and several mechanisms of action have been proposed. In the present study we characterized the intestinal microbiota of 19 subjects suffering from diagnosed IBS using a fully validated High Taxonomic Fingerprint Microbiota Array (HTF-Microbi.
View Article and Find Full Text PDFTraditionally regarded as stable through the entire lifespan, the intestinal microbiota has now emerged as an extremely plastic entity, capable of being reconfigured in response to different environmental factors. In a mutualistic context, these microbiome fluctuations allow the host to rapidly adjust its metabolic and immunologic performances in response to environmental changes. Several circumstances can disturb this homeostatic equilibrium, inducing the intestinal microbiota to shift from a mutualistic configuration to a disease-associated profile.
View Article and Find Full Text PDFIn the current study, batch culture fermentations on fecal samples of 3 healthy individuals were performed to assess the effect of the addition of prebiotics (FOS), probiotics (Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13) and synbiotics (B. longum Bar33 + L. helveticus Bar13 + FOS) on the fecal metabolic profiles.
View Article and Find Full Text PDFThis study was aimed at determining the probiotic potential of a large number of autochthonous lactic acid bacteria isolated from fruit and vegetables. Survival under simulated gastric and intestinal conditions showed that 35% of the strains, mainly belonging to the species Lactobacillus plantarum maintained high cell densities. Selected strains did not affect the immune-mediation by Caco-2 cells.
View Article and Find Full Text PDFThe human gastrointestinal tract harbors the most complex human microbial ecosystem (intestinal microbiota). The comprehensive genome of these microbial populations (intestinal microbiome) is estimated to have a far greater genetic potential than the human genome itself. Correlations between changes in composition and activity of the gut microbiota and common disorders, such as inflammatory bowel diseases, obesity, diabetes, and atopic diseases, have been proposed, increasing the interest of the scientific community in this research field.
View Article and Find Full Text PDFConsidering the increase in the consumption of yeasts as human probiotics, the aim of this study was to broadly investigate the beneficial properties of the lactic yeast Kluyveromyces marxianus (formerly Kluyveromyces fragilis) B0399. Several potential probiotic traits of K. marxianus B0399 were investigated by using in vitro assays, including adhesion and immune modulation, and the effect of the administration of 10(7) CFU/day of K.
View Article and Find Full Text PDFObjectives: Rifaximin, a rifamycin derivative, has been reported to induce clinical remission of active Crohn's disease (CD), a chronic inflammatory bowel disorder. In order to understand how rifaximin affects the colonic microbiota and its metabolism, an in vitro human colonic model system was used in this study.
Methods: We investigated the impact of the administration of 1800 mg/day of rifaximin on the faecal microbiota of four patients affected by colonic active CD [Crohn's disease activity index (CDAI > 200)] using a continuous culture colonic model system.
In this review we focus on the revision of the prebiotic concept in the context of the new metagenomic era. Functional metagenomic data provided by the Human Microbiome Project are revolutionizing the view of the symbiotic relationship between the intestinal microbiota and the human host. A deeper knowledge of the mechanisms that govern the dynamic interplay between diet, intestinal microbiota and host nutrition opens the way to better information on the prebiotic structure-function relationships, tailoring prebiotic formula into specific health attributes.
View Article and Find Full Text PDF