The Saccharomyces cerevisiae gene encoding xylulose kinase (XKS1) was over-expressed to an abundance of ≥ 10% intracellular protein in Escherichia coli. Instability of XKS1, not pointed out in previous reports of the enzyme, prevented isolation of active enzyme in native or "tagged" form under a wide range of purification conditions. A fusion protein haboring C-terminal Strep-tag II (XKS1-Strep) displayed activity (∼20 U/mg) as isolated.
View Article and Find Full Text PDFDespite their widely varying physiological functions in carbonyl metabolism, AKR2B5 (Candida tenuis xylose reductase) and many related enzymes of the aldo-keto reductase protein superfamily utilise PQ (9,10-phenanthrenequinone) as a common in vitro substrate for NAD(P)H-dependent reduction. The catalytic roles of the conserved active-site residues (Tyr51, Lys80 and His113) of AKR2B5 in the conversion of the reactive alpha-dicarbonyl moiety of PQ are not well understood. Using wild-type and mutated (Tyr51, Lys80 and His113 individually replaced by alanine) forms of AKR2B5, we have conducted steady-state and transient kinetic studies of the effects of varied pH and deuterium isotopic substitutions in coenzyme and solvent on the enzymatic rates of PQ reduction.
View Article and Find Full Text PDFSubstitution of active-site Tyr-51 by Ala (Y51A) disrupted the activity of Candida tenuis xylose reductase by six orders of magnitude. External bromide brought about unidirectional rate enhancement ( approximately 2x10(3)-fold at 300mM) for NAD(+)-dependent xylitol oxidation by Y51A. Activity of the wild-type reductase was dependent on a single ionizable protein group exhibiting a pK of 9.
View Article and Find Full Text PDF