Eur Arch Psychiatry Clin Neurosci
September 2024
Transient receptor potential canonical (TRPC) ion channels are expressed in areas of the brain responsible for processing emotion and mood and have been implicated in the pathophysiology of internalizing disorders such as major depressive disorder and anxiety disorders. This review outlines the rationale for targeting TRPC ion channels for drug development, with specific focus on TRPC4 and TRPC5. We provide preclinical evidence that the lack of TRPC4 and TRPC5 channels or its pharmacological inhibition attenuate fear and anxiety without impairing other behaviors in mice.
View Article and Find Full Text PDFPrevious investigations have revealed performance deficits and altered neural processes during working-memory (WM) tasks in major depressive disorder (MDD). While most of these studies used task-based functional magnetic resonance imaging (fMRI), there is an increasing interest in resting-state fMRI to characterize aberrant network dynamics involved in this and other MDD-associated symptoms. It has been proposed that activity during the resting-state represents characteristics of brain-wide functional organization, which could be highly relevant for the efficient execution of cognitive tasks.
View Article and Find Full Text PDFNeuroimaging studies have identified the anterior cingulate cortex (ACC) as one of the major targets of ketamine in the human brain, which may be related to ketamine's antidepressant (AD) mechanisms of action. However, due to different methodological approaches, different investigated populations, and varying measurement timepoints, results are not consistent, and the functional significance of the observed brain changes remains a matter of open debate. Inhibition of glutamate release during acute ketamine administration by lamotrigine provides the opportunity to gain additional insight into the functional significance of ketamine-induced brain changes.
View Article and Find Full Text PDFWhen watching a negative emotional movie, we differ from person to person in the ease with which we engage and the difficulty with which we disengage throughout a temporally evolving narrative. We investigated neural responses of emotional processing, by considering inter-individual synchronization in subjective emotional engagement and disengagement. The neural underpinnings of these shared responses are ideally studied in naturalistic scenarios like movie viewing, wherein individuals emotionally engage and disengage at their own time and pace throughout the course of a narrative.
View Article and Find Full Text PDFBackground: Both ruminative thought processes and adverse childhood experiences (ACEs) are well-established risk factors for the emergence and maintenance of depression. However, the neurobiological mechanisms underlying these associations remain poorly understood.
Methods: We examined resting-state functional magnetic resonance imaging data (3 T Tim Trio MR scanner; Siemens, Erlangen) of 44 individuals diagnosed with an acute depressive episode.
Background: Anhedonia and other deficits in reward- and motivation-related processing in psychiatric patients, including patients with major depressive disorder (MDD), represent a high unmet medical need. Neurobiologically, these deficits in MDD patients are mainly associated with low dopamine function in a frontostriatal network. In this study, alterations in brain activation changes during reward processing and at rest in MDD patients compared with healthy subjects are explored and the effects of a single low dose of the dopamine D2 receptor antagonist amisulpride are investigated.
View Article and Find Full Text PDFBackground/objective: Electroconvulsive therapy (ECT) is effective for treatment-resistant and psychotic depression. One previously reported side effect of ECT is the disruption of memory reconsolidation. This study examines whether this disruption induced by ECT can be detected in routine neuropsychological assessments.
View Article and Find Full Text PDFIntroduction: Psychodynamic psychotherapy is an effective and widely used treatment for major depressive disorder (MDD); however, little is known about neurobiological changes associated with induced symptom improvement.
Methods: Proton magnetic resonance spectroscopy with a two-dimensional J-resolved sequence served to test the relationship between glutamate (Glu) and glutamine (Gln) levels, measured separately in pregenual anterior cingulate cortex (pgACC) and the anterior midcingulate cortex (aMCC) as a control region, with change in depression symptoms after 6 months of weekly psychodynamic psychotherapy sessions in MDD patients. Depressed (N = 45) and healthy (N = 30) subjects participated in a baseline proton magnetic resonance spectroscopy measurement and a subgroup of MDD subjects (N = 21) then received once-a-week psychodynamic psychotherapy and participated in a second proton magnetic resonance spectroscopy measurement after 6 months.
There is intriguing evidence suggesting that ketamine might have distinct acute and delayed neurofunctional effects, as its acute administration transiently induces schizophrenia-like symptoms, while antidepressant effects slowly emerge and are most pronounced 24 h after administration. Studies attempting to characterize ketamine's mechanism of action by using blood oxygen level dependent (BOLD) imaging have yielded inconsistent results regarding implicated brain regions and direction of effects. This may be due to intrinsic properties of the BOLD contrast, while cerebral blood flow (CBF), as measured with arterial spin labeling, is a single physiological marker more directly related to neural activity.
View Article and Find Full Text PDFThe promise of machine learning has fueled the hope for developing diagnostic tools for psychiatry. Initial studies showed high accuracy for the identification of major depressive disorder (MDD) with resting-state connectivity, but progress has been hampered by the absence of large datasets. Here we used regular machine learning and advanced deep learning algorithms to differentiate patients with MDD from healthy controls and identify neurophysiological signatures of depression in two of the largest resting-state datasets for MDD.
View Article and Find Full Text PDFIntroduction: Cognition and emotion are fundamentally integrated in the brain and mutually contribute to behavior. The relation between working memory (WM) and emotion is particularly suited to investigate cognition-emotion interaction since WM is an essential component of many higher cognitive functions. Ketamine affects not only WM but also has a profound impact on emotional processing.
View Article and Find Full Text PDFElectroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression. However, the underlying mechanisms of action are not yet fully understood. The investigation of depression-specific networks using resting-state fMRI and the relation to differential symptom improvement might be an innovative approach providing new insights into the underlying processes.
View Article and Find Full Text PDFIntranasal (IN) and intravenous (IV) applications of ketamine have been proven effective for the treatment of depression, but direct comparative trials or meta-analyses on whether both differ in their antidepressant efficacy are lacking. We aimed to meta-analytically compare the short-term efficacy of a single dose of IV and IN ketamine in adult patients with major depressive disorder (MDD) and included double-blind, randomized controlled trials published until February 2022 in our analyses. The main outcome was a response 24 h after the administration of a single dose of ketamine.
View Article and Find Full Text PDFAbnormal emotional processing in major depressive disorder (MDD) has been associated with increased activation to negative stimuli in cortico-limbic brain regions. The authors investigated whether treatment with BI 1358894, a small-molecule inhibitor of the transient receptor potential cation channel subfamily C leads to attenuated activity in these areas in MDD patients. 73 MDD patients were randomized to receive a single oral dose of BI 1358894 (100 mg), citalopram (20 mg), or matching placebo.
View Article and Find Full Text PDFInt J Neuropsychopharmacol
January 2023
Background: Electroconvulsive therapy (ECT) is an effective treatment for patients suffering from depression. Yet the exact neurobiological mechanisms underlying the efficacy of ECT and indicators of who might respond best to it remain to be elucidated. Identifying neural markers that can inform about an individual's response to ECT would enable more optimal treatment strategies and increase clinical efficacy.
View Article and Find Full Text PDFBackground: Growing evidence underscores the utility of ketamine as an effective and rapid-acting treatment option for major depressive disorder (MDD). However, clinical outcomes vary between patients. Predicting successful response may enable personalized treatment decisions and increase clinical efficacy.
View Article and Find Full Text PDFKetamine exerts its rapid antidepressant effects via modulation of the glutamatergic system. While numerous imaging studies have investigated the effects of ketamine on a functional macroscopic brain level, it remains unclear how altered glutamate metabolism and changes in brain function are linked. To shed light on this topic we here conducted a multimodal imaging study in healthy volunteers (N = 23) using resting state fMRI and proton (H) magnetic resonance spectroscopy (MRS) to investigate linkage between metabolic and functional brain changes induced by ketamine.
View Article and Find Full Text PDFKetamine is a promising treatment option for patients with Major Depressive Disorder (MDD) and has become an important research tool to investigate antidepressant mechanisms of action. However, imaging studies attempting to characterise ketamine's mechanism of action using blood oxygen level-dependent signal (BOLD) imaging have yielded inconsistent results- at least partly due to intrinsic properties of the BOLD contrast, which measures a complex signal related to neural activity. To circumvent the limitations associated with the BOLD signal, we used arterial spin labelling (ASL) as an unambiguous marker of neuronal activity-related changes in cerebral blood flow (CBF).
View Article and Find Full Text PDFExtensive research has reported that electroconvulsive therapy (ECT) can be highly effective in approximately 80% of patients suffering from depression. Its clinical use is mainly limited by historical objections and the concern about unwanted adverse effects (AEs), including serious and potentially life-threatening adverse events (pLTAEs), induced either by ECT or by anesthesia. Objective risk estimation is, therefore, a decisive factor in determining an indication for ECT.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is associated with abnormal neural circuitry. It can be measured by assessing functional connectivity (FC) at resting-state functional MRI, that may help identifying neural markers of MDD and provide further efficient diagnosis and monitor treatment outcomes. The main aim of the present study is to investigate, in an unbiased way, functional alterations in patients with MDD using a large multi-center dataset from the PsyMRI consortium including 1546 participants from 19 centers ( www.
View Article and Find Full Text PDFThere is an urgent need for effective follow-up treatments after acute electroconvulsive therapy (ECT) in depressed patients. Preliminary evidence suggests psychotherapeutic interventions to be a feasible and efficacious follow-up treatment. However, there is a need for research on the long-term usefulness of such psychotherapeutic offers in a naturalistic setting that is more representative of routine clinical practice.
View Article and Find Full Text PDF