Publications by authors named "Simone Florim da Silva"

Glial fibrillary acidic protein (GFAP) is the main intermediate filament protein used as a marker for the identification of astrocytes in the central nervous system of vertebrates. Analogous filaments have been observed in the glial cells of many mollusks and annelids but not in crustaceans. The present study was carried out to identify by light microscopy immunohistochemistry, immunoelectronmicroscopy and immunoblotting, GFAP-like positive structures in the visual system of the crab Ucides cordatus as additional information to help detect and classify glial cells in crustaceans.

View Article and Find Full Text PDF

Neurofilaments (NFs) have not been observed in crustaceans using conventional electron microscopy, and intermediate filaments have never been described in crustaceans and other arthropods by immunocytochemistry. Since polypeptides, labeled by the NN18-clone antibody, were revealed on microtubule side-arms of crayfish, we have tested, in this study, whether proteins similar to mammalian NFs are present in the protocerebral tract (PCT) of the crab Ucides cordatus. We used immunohistochemistry for light microscopy with monoclonal antibodies against three different NF subunits, high (NF-H), medium (NF-M), and light (NF-L).

View Article and Find Full Text PDF

Glial cells, in both vertebrate and invertebrate nervous systems, provide an essential environment for developmental, supportive, and physiological functions. However, information on glial cells themselves and on glial cell markers, with the exception of those of Drosophila and other insects, is not abundant in invertebrate organisms. A common ultrastructural feature of invertebrate nervous systems is that layers of glial cell cytoplasm-rich processes ensheath axons and neuronal and glial somata.

View Article and Find Full Text PDF