Publications by authors named "Simone E Salghetti"

Emerging evidence suggests that components of the ubiquitin-proteasome system are involved in the regulation of gene expression. A variety of factors, including transcriptional activators, coactivators, and histones, are controlled by ubiquitylation, but the mechanisms through which this modification can function in transcription are generally unknown. Here, we report that the Saccharomyces cerevisiae protein Asr1 is a RING finger ubiquitin-ligase that binds directly to RNA polymerase II via the carboxyl-terminal domain (CTD) of the largest subunit of the enzyme.

View Article and Find Full Text PDF

Myc is an oncoprotein transcription factor that promotes cell proliferation and apoptosis. Analysis of highly conserved elements within vertebrate Myc proteins has been instrumental in defining the functions of the Myc protein. Here, we probe the role of a highly conserved, but little studied, element within the central region of c-Myc, termed 'Myc box III' (MbIII).

View Article and Find Full Text PDF

Myc is a highly unstable transcription factor that is destroyed by ubiquitin (Ub)-mediated proteolysis. We have previously identified an amino-terminal 'degron' within Myc that signals its destruction; this degron spans the transcriptional activation domain of Myc, and includes two highly conserved regions called Myc boxes I and II. We now report the identification of a second element--the D-element--which is also required for Myc proteolysis.

View Article and Find Full Text PDF

We have developed an inducible system to visualize gene expression at the levels of DNA, RNA and protein in living cells. The system is composed of a 200 copy transgene array integrated into a euchromatic region of chromosome 1 in human U2OS cells. The condensed array is heterochromatic as it is associated with HP1, histone H3 methylated at lysine 9, and several histone methyltransferases.

View Article and Find Full Text PDF

Myc is an oncoprotein transcription factor that plays a prominent role in cancer. Like many transcription factors, Myc is an unstable protein that is destroyed by ubiquitin (Ub)-mediated proteolysis. Here, we report that the oncoprotein and Ub ligase Skp2 regulates Myc ubiquitylation and stability.

View Article and Find Full Text PDF

The oncoprotein transcription factor Myc plays a crucial role in the control of cell growth and proliferation. Consistent with its potent growth-promoting properties, cells have evolved a number of mechanisms to limit the activity and accumulation of the Myc protein. One of the most striking of these mechanisms is ubiquitin (Ub)-mediated proteolysis, which typically destroys Myc within minutes of its synthesis.

View Article and Find Full Text PDF