Publications by authors named "Simone Cristina Picchi"

Type II toxin-antitoxin (TA) systems are widespread in bacteria and are involved in important cell features, such as cell growth inhibition and antimicrobial tolerance, through the induction of persister cells. Overall, these characteristics are associated with bacterial survival under stress conditions and represent a significant genetic mechanism to be explored for antibacterial molecules. We verified that even though Xylella fastidiosa and Xanthomonas citri subsp.

View Article and Find Full Text PDF

N-Acetylcysteine (NAC) is an antioxidant, anti-adhesive, and antimicrobial compound. Even though there is much information regarding the role of NAC as an antioxidant and anti-adhesive agent, little is known about its antimicrobial activity. In order to assess its mode of action in bacterial cells, we investigated the metabolic responses triggered by NAC at neutral pH.

View Article and Find Full Text PDF

subsp. () is a plant pathogenic bacterium causing citrus canker disease. The gene encodes a phosphoglucomutase/phosphomannomutase protein that is a key enzyme required for the synthesis of lipopolysaccharides and exopolysaccharides in Xanthomonads.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) can be found in various organisms, and could be considered an alternative for pesticides used to control plant pathogens, including those affecting citrus. Brazil is the largest producer and exporter of frozen concentrated orange juice in the world. However, the citrus industry has been affected by several diseases such as citrus canker and huanglongbing (HLB), caused by the bacteria Xanthomonas citri subsp.

View Article and Find Full Text PDF

Background: RNA helicases are enzymes that catalyze the separation of double-stranded RNA (dsRNA) using the free energy of ATP binding and hydrolysis. DEAD/DEAH families participate in many different aspects of RNA metabolism, including RNA synthesis, RNA folding, RNA-RNA interactions, RNA localization and RNA degradation. Several important bacterial DEAD/DEAH-box RNA helicases have been extensively studied.

View Article and Find Full Text PDF

The twin-arginine translocation (Tat) pathway of the xylem-limited phytopathogenic bacterium Xylella fastidiosa strain 9a5c, responsible for citrus variegated chlorosis, was explored. The presence of tatA, tatB, and tatC in the X. fastidiosa genome together with a list of proteins harboring 2 consecutive arginines in their signal peptides suggested the presence of a Tat pathway.

View Article and Find Full Text PDF

The genome of the bacterium Xylella fastidiosa contains four ORFs (XF2721, XF2725, XF2739 and XF0295) related to the restriction modification type I system, ordinarily named R-M. This system belongs to the DNA immigration control region (ICR). Each ORF is related to different operon structures, which are homologues among themselves and with subunit Hsd R from the endonuclease coding genes.

View Article and Find Full Text PDF