X-ray computed tomography is one of the most promising measurement techniques for the dimensional evaluation of industrial components. However, the inherent complexity of this technology also involves important challenges. One of them is to develop surface determination algorithms capable of providing measurement results with better accuracy in any situation-for example, for single and multi-material parts, inner and outer geometries, with and without image artefacts, etc.
View Article and Find Full Text PDFWe present pore-scale simulations of two-phase flows in a reconstructed fibrous porous layer. The three-dimensional microstructure of the material, a fuel cell gas diffusion layer, is acquired via X-ray computed tomography and used as input for lattice Boltzmann simulations. We perform a quantitative analysis of the multiphase pore-scale dynamics, and we identify the dominant fluid structures governing mass transport.
View Article and Find Full Text PDFThe surgical treatment of urinary incontinence is often performed by adopting an Artificial Urinary Sphincter (AUS). AUS cuff represents a fundamental component of the device, providing the mechanical action addressed to urethral occlusion, which can be investigated by computational approach. In this work, AUS cuff is studied with reference to both materials and structure, to develop a finite element model.
View Article and Find Full Text PDFSilica-based ceramics have been proposed for coating purposes to enhance dental and orthopedic titanium (Ti) implant bioactivity. The aim of this study was to investigate the influence of sphene-based bioceramic (CaO.TiO.
View Article and Find Full Text PDFWear is currently quantified as mass loss of the bearing materials measured using gravimetric methods. However, this method does not provide other information, such as volumetric loss or surface deviation. In this work, we validated a technique to quantify polyethylene wear in three different batches of ultrahigh-molecular-polyethylene acetabular cups used for hip implants using nondestructive microcomputed tomography.
View Article and Find Full Text PDFMore than 60.000 hip arthroplasty are performed every year in Italy. Although Ultra-High-Molecular-Weight-Polyethylene remains the most used material as acetabular cup, wear of this material induces over time in vivo a foreign-body response and consequently osteolysis, pain, and the need of implant revision.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2016
This study was aimed at determining the surface degradation occurred on retrieved ceramic and metallic heads, as well as the influence of the head surface quality on the wear of the polyethylene counterface. To this purpose, 14 ceramic and 14 metallic femoral heads retrieved at revision surgery were examined. Scanning electron microscopic analysis provided visual evidence that some metallic heads presented crescent wear more often than the ceramic ones; the former showed a higher volumetric loss (as determined by Coordinate Measuring Machine) than the latter, but less negative Rsk values.
View Article and Find Full Text PDFCeramic-on-ceramic and metal-on-metal bearing surfaces are often employed for total hip replacement because of their resistance to wear. However, they have some limits: brittleness is a major concern for ceramic, and ion release is a drawback for metal. To reduce the effect of these limitations, a hybrid coupling of ceramic-on-metal has been proposed.
View Article and Find Full Text PDFThe contribution of this paper is twofold: (1) it presents an automatic 3D modeling technique and (2) it advances a procedure for its metrological evaluation in the context of a medical application, the 3D modeling of dental plaster casts. The motivation for this work is the creation of a "virtual gypsotheque" where cumbersome dental plaster casts can be replaced by numerical 3D models, thereby alleviating storage and access problems and allowing dentists and orthodontists the use of novel and unprecedented software tools for their medical evaluations. Modeling free-form surfaces of anatomical interest is an intriguing mixture of open issues concerning 3D modeling, geometrical metrology, and medicine.
View Article and Find Full Text PDF