Critical for human gene therapy is the availability of small promoter tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters using computational biology and phylogenetic conservation. MiniPromoters were tested in mouse as single-copy knock-ins at the locus on the X Chromosome, and evaluated for lacZ reporter expression in CNS and non-CNS tissue.
View Article and Find Full Text PDFBackground: The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo.
View Article and Find Full Text PDFImpaired mitochondrial oxidative phosphorylation (OXPHOS) is considered a cause of aging. A reduction in mitochondrial DNA (mtDNA) replication and/or transcription may contribute to this OXPHOS diminution. Impairments in the displacement (D) loop, or non-coding, region of the mitochondrial genome, or accumulation of mtDNA mutations, may affect mtDNA replication and transcription.
View Article and Find Full Text PDF