Microglia are thought to originate exclusively from primitive macrophage progenitors in the yolk sac (YS) and to persist throughout life without much contribution from definitive hematopoiesis. Here, using lineage tracing, pharmacological manipulation, and RNA-sequencing, we elucidated the presence and characteristics of monocyte-derived macrophages (MDMs) in the brain parenchyma at baseline and during microglia repopulation, and defined the core transcriptional signatures of brain-engrafted MDMs. Lineage tracing mouse models revealed that MDMs transiently express CD206 during brain engraftment as CD206 microglia precursors in the YS.
View Article and Find Full Text PDFCD4 T cells can either enhance or inhibit tumour immunity. Although regulatory T cells have long been known to impede antitumour responses, other CD4 T cells have recently been implicated in inhibiting this response. Yet, the nature and function of the latter remain unclear.
View Article and Find Full Text PDFRecent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative-region-associated microglia (PAMs) in developing white matter and disease-associated microglia (DAMs) prevalent in various neurodegenerative conditions. PAMs and DAMs share a similar core gene signature.
View Article and Find Full Text PDFMicroglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-β (Aβ) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD.
View Article and Find Full Text PDFRecent studies have characterized various mouse antigen-presenting cells (APCs) expressing the lymphoid-lineage transcription factor RORγt (Retinoid-related orphan receptor gamma t), which exhibit distinct phenotypic features and are implicated in the induction of peripheral regulatory T cells (Tregs) and immune tolerance to microbiota and self-antigens. These APCs encompass Janus cells and Thetis cell subsets, some of which express the AutoImmune REgulator (AIRE). RORγt MHCII type 3 innate lymphoid cells (ILC3) have also been implicated in the instruction of microbiota-specific Tregs.
View Article and Find Full Text PDFGenetic tools to target microglia specifically and efficiently from the early stages of embryonic development are lacking. We generated a constitutive Cre line controlled by the microglia signature gene Crybb1 that produced nearly complete recombination in embryonic brain macrophages (microglia and border-associated macrophages [BAMs]) by the perinatal period, with limited recombination in peripheral myeloid cells. Using this tool in combination with Flt3-Cre lineage tracer, single-cell RNA-sequencing analysis, and confocal imaging, we resolved embryonic-derived versus monocyte-derived BAMs in the mouse cortex.
View Article and Find Full Text PDFGenetic studies have highlighted microglia as pivotal in orchestrating Alzheimer's disease (AD). Microglia that adhere to Aβ plaques acquire a transcriptional signature, "disease-associated microglia" (DAM), which largely emanates from the TREM2-DAP12 receptor complex that transmits intracellular signals through the protein tyrosine kinase SYK. The human TREM2 variant associated with high AD risk fails to activate microglia via SYK.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) represent a key component of the tumor microenvironment and are generally associated with immunosuppression and poor prognosis. TREM2 is a transmembrane receptor of the immunoglobulin superfamily expressed in myeloid cells. TREM2 has been extensively studied in microglia and neurodegenerative diseases and recently emerged as a marker of pro-tumorigenic macrophages.
View Article and Find Full Text PDFA key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions.
View Article and Find Full Text PDFThe meninges contain adaptive immune cells that provide immunosurveillance of the central nervous system (CNS). These cells are thought to derive from the systemic circulation. Through single-cell analyses, confocal imaging, bone marrow chimeras, and parabiosis experiments, we show that meningeal B cells derive locally from the calvaria, which harbors a bone marrow niche for hematopoiesis.
View Article and Find Full Text PDFThe meninges are a membranous structure enveloping the central nervous system (CNS) that host a rich repertoire of immune cells mediating CNS immune surveillance. Here, we report that the mouse meninges contain a pool of monocytes and neutrophils supplied not from the blood but by adjacent skull and vertebral bone marrow. Under pathological conditions, including spinal cord injury and neuroinflammation, CNS-infiltrating myeloid cells can originate from brain borders and display transcriptional signatures distinct from their blood-derived counterparts.
View Article and Find Full Text PDFTriggering receptor expressed on myeloid cells 2 (TREM2) sustains microglia response to brain injury stimuli including apoptotic cells, myelin damage, and amyloid β (Aβ). Alzheimer's disease (AD) risk is associated with the variant, which impairs ligand binding and consequently microglia responses to Aβ pathology. Here, we show that TREM2 engagement by the mAb hT2AB as surrogate ligand activates microglia in 5XFAD transgenic mice that accumulate Aβ and express either the common TREM2 variant () or scRNA-seq of microglia from -5XFAD mice treated once with control hIgG1 exposed four distinct trajectories of microglia activation leading to disease-associated (DAM), interferon-responsive (IFN-R), cycling (Cyc-M), and MHC-II expressing (MHC-II) microglia types.
View Article and Find Full Text PDFSystematic understanding of immune aging on a whole-body scale is currently lacking. We characterized age-associated alterations in immune cells across multiple mouse organs using single-cell RNA and antigen receptor sequencing and flow cytometry-based validation. We defined organ-specific and common immune alterations and identified a subpopulation of age-associated granzyme K (GZMK)-expressing CD8 T (Taa) cells that are distinct from T effector memory (Tem) cells.
View Article and Find Full Text PDFA growing body of evidence indicates that microglia actively remove synapses , thereby playing a key role in synaptic refinement and modulation of brain connectivity. This phenomenon was mainly investigated in immunofluorescence staining and confocal microscopy. However, a quantification of synaptic material in microglia using these techniques is extremely time-consuming and labor-intensive.
View Article and Find Full Text PDFCheckpoint immunotherapy unleashes T cell control of tumors, but is undermined by immunosuppressive myeloid cells. TREM2 is a myeloid receptor that transmits intracellular signals that sustain microglial responses during Alzheimer's disease. TREM2 is also expressed by tumor-infiltrating macrophages.
View Article and Find Full Text PDFMicroglia are parenchymal macrophages of the CNS; as professional phagocytes they are important for maintenance of the brain's physiology. These cells are generated through primitive hematopoiesis in the yolk sac and migrate into the brain rudiment after establishment of embryonic circulation. Thereafter, microglia develop in a stepwise fashion, reaching complete maturity after birth.
View Article and Find Full Text PDFIn a recent study, Masuda and colleagues (Nature 2019;566:388-392) used single-cell RNA-sequencing (scRNA-seq) to profile microglia across different anatomical compartments, developmental stages, and types of brain pathology in mice. Moreover, the authors performed a novel transcriptomic characterization of microglia from multiple sclerosis patients and identified phenotypically conserved microglial subsets between species. These findings, together with seminal prior results from various groups, provide valuable insights into the spatiotemporal heterogeneity of microglia during brain development and disease.
View Article and Find Full Text PDFOngoing research is revealing multiple, previously unappreciated, facets of immunity in the central nervous system, and the recent studies on the meningeal lymphatic system represent an emblematic example. In this context, a paper from Louveau and colleagues (Nat. Neurosci.
View Article and Find Full Text PDFBrain inflammation is a critical factor involved in neurodegeneration. Recently, the prostaglandin E (PGE ) downstream members were suggested to modulate neuroinflammatory responses accompanying neurodegenerative diseases. In this study, we investigated the protective effects of prostaglandin E receptor 2 (EP ) during TLR3 and TLR4-driven inflammatory response using in vitro primary microglia and ex vivo organotypic hippocampal slice cultures (OHSCs).
View Article and Find Full Text PDFMyelin is synthesized as a multilamellar membrane, but the mechanisms of membrane turnover are unknown. We found that myelin pieces were gradually released from aging myelin sheaths and were subsequently cleared by microglia. Myelin fragmentation increased with age and led to the formation of insoluble, lipofuscin-like lysosomal inclusions in microglia.
View Article and Find Full Text PDFPlatinum-containing molecules are widely used as anticancer drugs. These molecules exert cytotoxic effects by binding to DNA through various mechanisms. The binding between DNA and platinum-based drugs hinders the opening of DNA, and therefore, DNA duplication and transcription are severely hampered.
View Article and Find Full Text PDFBackground: Amyloid β (Aβ) peptide aggregation is the main molecular mechanism underlying the development of Alzheimer's disease, the most widespread form of senile dementia worldwide. Increasing evidence suggests that the key factor leading to impaired neuronal function is accumulation of water-soluble Aβ oligomers rather than formation of the senile plaques created by the deposition of large fibrillary aggregates of Aβ. However, several questions remain about the preliminary steps and the progression of Aβ oligomerization.
View Article and Find Full Text PDFMicroglia are suggested to be involved in several neuropsychiatric diseases. Indeed changes in microglia morphology have been reported in different mouse models of depression. A crucial regulatory system for microglia function is the well-defined CX3C axis.
View Article and Find Full Text PDF