Publications by authors named "Simone Bagnis"

The largely uncontrolled release of active pharmaceuticals ingredients (APIs) within untreated wastewater discharged to waterbodies, associated with many rapidly urbanising centres is of growing concern owing to potential antimicrobial resistance, endocrine disruption and potential toxicity. A sampling campaign has been undertaken to assess the source, occurrence, magnitude and risk associated with APIs and other chemicals within the Nairobi/Athi river basin, in Kenya, East Africa. The catchment showed an extensive downstream impact zone estimated to extend 75 km, mostly, but not exclusively, derived from the direct discharge of untreated wastewater from the urban centre of Nairobi city.

View Article and Find Full Text PDF

The direct discharge of untreated wastewater has been identified as an important source of environmental contamination by active pharmaceutical ingredients and other 'down-the-drain' chemicals in developing countries. It necessitates the development of an environmental risk assessment approach for the resulting impact zone. This study was designed to investigate the impact of low level of dilution (<10) on the natural attenuation processes of distribution and degradation within the impact zone.

View Article and Find Full Text PDF

Evidence of ecotoxicological effects of active pharmaceuticals ingredients (APIs) has increased research into their environmental fate. In low and low-middle income countries (LLMICs) the main source of APIs to surface waters is from discharge of untreated wastewater. Consequently, concentrations of APIs can be relatively high in the "impact zone" downstream of a discharge point.

View Article and Find Full Text PDF

Infiltration of heavy metal (HM) polluted wastewater can seriously compromise soil and groundwater quality. Interactions between mineral soil components (e.g.

View Article and Find Full Text PDF