Publications by authors named "Simone Assali"

Germanium-tin (GeSn) semiconductors are a front-runner platform for compact mid-infrared devices due to their tunable narrow bandgap and compatibility with silicon processing. However, their large lattice parameter has been a major hurdle, limiting the quality of epitaxial layers grown on silicon or germanium substrates. Herein, we demonstrate that 20 nm Ge nanowires (NWs) act as effective compliant substrates to grow extended defect-free GeSn alloys with a composition uniformity over several micrometers along the NW growth axis without significant buildup of the compressive strain.

View Article and Find Full Text PDF

The p-symmetry of the hole wavefunction is associated with a weaker hyperfine interaction, which makes hole spin qubits attractive candidates to implement quantum processors. However, recent studies demonstrate that hole qubits are still very sensitive to nuclear spin bath, thus highlighting the need for nuclear spin-free germanium (Ge) qubits to suppress this decoherence channel. Herein, this work demonstrates the epitaxial growth of Ge- and Si-depleted, isotopically enriched Ge/silicon-germanium (SiGe) quantum wells.

View Article and Find Full Text PDF

Nanowires are promising platforms for realizing ultra-compact light sources for photonic integrated circuits. In contrast to impressive progress on light confinement and stimulated emission in III-V and II-VI semiconductor nanowires, there has been no experimental demonstration showing the potential to achieve strong cavity effects in a bottom-up grown single group-IV nanowire, which is a prerequisite for realizing silicon-compatible infrared nanolasers. Herein, we address this limitation and present an experimental observation of cavity-enhanced strong photoluminescence from a single Ge/GeSn core/shell nanowire.

View Article and Find Full Text PDF

The short-wave infrared (SWIR) is an underexploited portion of the electromagnetic spectrum in metasurface-based nanophotonics despite its strategic importance in sensing and imaging applications. This is mainly attributed to the lack of material systems to tailor light-matter interactions in this range. Herein, this limitation is addressed and an all-dielectric silicon-integrated metasurface enabling polarization-induced Fano resonance control at SWIR frequencies is demonstrated.

View Article and Find Full Text PDF

The quiet quantum environment of holes in solid-state devices is at the core of increasingly reliable architectures for quantum processors and memories. However, due to the lack of scalable materials to properly tailor the valence band character and its energy offsets, the precise engineering of light-hole (LH) states remains a serious obstacle toward coherent optical photon-spin interfaces needed for a direct mapping of the quantum information encoded in photon flying qubits to stationary spin processors. Herein, to alleviate this long-standing limitation, an all-group-IV low-dimensional system is demonstrated, consisting of a highly tensile strained germanium quantum well grown on silicon allowing new degrees of freedom to control and manipulate the hole states.

View Article and Find Full Text PDF

Using GeSn semiconductor as a model system, this work unravels the atomic-level details of the behavior of solutes in the vicinity of a dislocation prior to surface segregation in strained, metastable thin layers. The dislocations appear in the 3D atom probe tomography maps as columnar regions, 3.5-4.

View Article and Find Full Text PDF

The growth of Sn-rich group-IV semiconductors at the nanoscale can enrich the understanding of the fundamental properties of metastable GeSn alloys. Here, we demonstrate the effect of the growth conditions on the morphology and composition of Ge/GeSn core/shell nanowires by correlating the experimental observations with a theoretical interpretation based on a multiscale approach. We show that the cross-sectional morphology of Ge/GeSn core/shell nanowires changes from hexagonal to dodecagonal upon increasing the supply of the Sn precursor.

View Article and Find Full Text PDF

We address the role of non-uniform composition, as measured by energy-dispersive x-ray spectroscopy, in the elastic properties of core/shell nanowires for the Ge/GeSn system. In particular, by finite element method simulations and transmission electron diffraction measurements, we estimate the residual misfit strain when a radial gradient in Sn and a Ge segregation at the nanowire facet edges are present. An elastic stiffening of the structure with respect to the uniform one is concluded, particularly for the axial strain component.

View Article and Find Full Text PDF

The deposition of Pd and Pt nanoparticles by atomic layer deposition (ALD) has been studied extensively in recent years for the synthesis of nanoparticles for catalysis. For these applications, it is essential to synthesize nanoparticles with well-defined sizes and a high density on large-surface-area supports. Although the potential of ALD for synthesizing active nanocatalysts for various chemical reactions has been demonstrated, insight into how to control the nanoparticle properties (i.

View Article and Find Full Text PDF

Silicon, arguably the most important technological semiconductor, is predicted to exhibit a range of new and interesting properties when grown in the hexagonal crystal structure. To obtain pure hexagonal silicon is a great challenge because it naturally crystallizes in the cubic structure. Here, we demonstrate the fabrication of pure and stable hexagonal silicon evidenced by structural characterization.

View Article and Find Full Text PDF

Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap.

View Article and Find Full Text PDF