S100 proteins are a subfamily of EF-hand calcium-binding proteins found primarily in vertebrate animals. They are distinguished by binding of transition metals and functioning in both the intracellular and extracellular milieu. S100A7 functions in the protection of the skin and mucous membranes and is a biomarker in inflammatory skin disease.
View Article and Find Full Text PDFLaboratory models are critical to basic and translational microbiology research. Models serve multiple purposes, from providing tractable systems to study cell biology to allowing the investigation of inaccessible clinical and environmental ecosystems. Although there is a recognized need for improved model systems, there is a gap in rational approaches to accomplish this goal.
View Article and Find Full Text PDFNeisseria gonorrhoeae (Gc) must overcome the limitation of metals such as zinc to colonize mucosal surfaces in its obligate human host. While the zinc-binding nutritional immunity proteins calprotectin (S100A8/A9) and psoriasin (S100A7) are abundant in human cervicovaginal lavage fluid, Gc possesses TonB-dependent transporters TdfH and TdfJ that bind and extract zinc from the human version of these proteins, respectively. Here we investigated the contribution of zinc acquisition to Gc infection of epithelial cells of the female genital tract.
View Article and Find Full Text PDFThe human pathogen Acinetobacter baumannii produces and utilizes acinetobactin for iron assimilation. Although two isomeric structures of acinetobactin, one featuring an oxazoline (Oxa) and the other with an isoxazolidinone (Isox) at the core, have been identified, their differential roles as virulence factors for successful infection have yet to be established. This study provides direct evidence that Oxa supplies iron more efficiently than Isox, primarily owing to its specific recognition by the cognate outer membrane receptor, BauA.
View Article and Find Full Text PDF, responsible for the sexually transmitted infection gonorrhea, is an obligate human pathogen exquisitely adapted for survival on mucosal surfaces of humans. This host-pathogen relationship has resulted in evolution by of pathways that enable the use of host metalloproteins as required nutrients through the deployment of outer membrane-bound TonB-dependent transporters (TdTs). Recently, a TdT called TdfH was implicated in binding to calprotectin (CP) and in removal of the bound zinc (Zn), enabling gonococcal growth.
View Article and Find Full Text PDF