Background: The aim was to assess, in vitro, the effects of radioiodine-131 (I-131) on the structure of titanium implants.
Material And Methods: A total of 28 titanium implants were divided into 7 groups ( = 4) and irradiated at 0, 6, 12, 24, 48, 192 and 384 hours. At the end of the experiment, each sample was investigated via scanning electron microscopy (SEM) and electrochemical measures.
The inhibiting properties of 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol (PyODT) on the corrosion of carbon steel in 1.0 M HCl solution were investigated by potentiodynamic polarization, electrochemical impedance spectroscopy, Raman spectroscopy, and SEM-EDX analysis. An approach based on machine learning algorithms and Raman data was also applied to follow the carbon steel degradation in different experimental conditions.
View Article and Find Full Text PDFThe dissolution of the main metals (Cu, Zn, Sn, Pb and Fe) found in waste printed circuit boards (WPCBs) was investigated by electrochemical corrosion measurements (potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)) in different bromide-based systems that could be used as lixiviants in hydrometallurgical route of metals recovery. The analysis of the corrosion products was carried out by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements. All measurements showed that the addition of bromine in the electrolyte favors to great extents the dissolution process of all studied metals as compared to bromine-free electrolytes.
View Article and Find Full Text PDF