We present a method for automated spike sorting for recordings with high-density, large-scale multielectrode arrays. Exploiting the dense sampling of single neurons by multiple electrodes, an efficient, low-dimensional representation of detected spikes consisting of estimated spatial spike locations and dominant spike shape features is exploited for fast and reliable clustering into single units. Millions of events can be sorted in minutes, and the method is parallelized and scales better than quadratically with the number of detected spikes.
View Article and Find Full Text PDFThe ultimate goal of neuroscience is understanding the brain at a functional level. This requires the investigation of the structural connectivity at multiple scales: from the single-neuron micro-connectomics to the brain-region macro-connectomics. In this work, we address the study of connectomics at the intermediate mesoscale, introducing a probabilistic approach capable of reconstructing complex topologies of large neuronal networks.
View Article and Find Full Text PDFDespite many structural and functional aspects of the brain organization have been extensively studied in neuroscience, we are still far from a clear understanding of the intricate structure-function interactions occurring in the multi-layered brain architecture, where billions of different neurons are involved. Although structure and function can individually convey a large amount of information, only a combined study of these two aspects can probably shade light on how brain circuits develop and operate at the cellular scale. Here, we propose a novel approach for refining functional connectivity estimates within neuronal networks using the structural connectivity as prior.
View Article and Find Full Text PDF