The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells.
View Article and Find Full Text PDFFollowing previous work, we investigated in more detail the relationship between apoptosis and delayed luminescence (DL) in human leukemia Jurkat T cells under a wide variety of treatments. We used menadione and hydrogen peroxide to induce oxidative stress and two flavonoids, quercetin, and epigallocatechin gallate, applied alone or in combination with menadione or H(2)O(2). 62 MeV proton beams were used to irradiate cells under a uniform dose of 2 or 10 Gy, respectively.
View Article and Find Full Text PDFMenadione (MD) is an effective cytotoxic drug able to produce intracellularly large amounts of superoxide anion. Quercetin (QC), a widely distributed bioflavonoid, can exert both antioxidant and pro-oxidant effects and is known to specifically inhibit cell proliferation and induce apoptosis in different cancer cell types. We have investigated the relation between delayed luminescence (DL) induced by UV-laser excitation and the effects of MD, hydrogen peroxide, and QC on apoptosis and cell cycle in human leukemia Jurkat T-cells.
View Article and Find Full Text PDFSingle photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution.
View Article and Find Full Text PDFIn vivo measurements of Delayed Luminescence (DL), the low-level photo-induced emission which lasts for a longer time after switching off the excitation light, have been performed on human skin, with the aim to develop a technique for optical biopsy. Preliminary tests have been performed on healthy volunteers, measuring the time decays of the spectral components (lambda(emiss) = 400-800 nm) starting 10 mus after switching off the excitation (lambda(exc) = 337 nm). Significant differences in the decay trends of DL from different subjects were revealed and quite a good reproducibility for the same subject was observed.
View Article and Find Full Text PDF