Since the advent of Hi-C in 2009, a plethora of high-throughput sequencing methods have emerged to profile the three-dimensional (3D) organization of eukaryotic genomes, igniting the era of 3D genomics. In recent years, the genomic resolution achievable by these approaches has dramatically increased and several single-cell versions of Hi-C have been developed. Moreover, a new repertoire of tools not based on proximity ligation of digested chromatin has emerged, enabling the investigation of the higher-order organization of chromatin in the nucleus.
View Article and Find Full Text PDFThe post-translational modification of histone tails is a dynamic process that provides chromatin with high plasticity. Histone modifications occur through the recruitment of nonhistone proteins to chromatin and have the potential to influence fundamental biological processes. Many recent studies have been directed at understanding the role of methylated lysine 20 of histone H4 (H4K20) in physiological and pathological processes.
View Article and Find Full Text PDFObesity and its associated metabolic abnormalities have become a global emergency with considerable morbidity and mortality. Epidemiologic and animal model data suggest an epigenetic contribution to obesity. Nevertheless, the cellular and molecular mechanisms through which epigenetics contributes to the development of obesity remain to be elucidated.
View Article and Find Full Text PDFThe Rbfox family of RNA-binding proteins is highly conserved with established roles in alternative splicing (AS) regulation. High-throughput studies aimed at understanding transcriptome remodeling have revealed skeletal muscle as displaying one of the largest number of AS events. This finding is consistent with requirements for tissue-specific protein isoforms needed to sustain muscle-specific functions.
View Article and Find Full Text PDFSplicing of pre-mRNAs is a crucial step in the gene expression pathway. Disruption of splicing has been linked to the pathogenesis of several human diseases and is particularly widespread in cancer. Recently, a number of mutations affecting genes of the core spliceosome machinery have been identified in haematological malignancies, yet the effect of such mutations on RNA splicing is unclear.
View Article and Find Full Text PDFMeiosis requires conserved transcriptional changes, but it is not known whether there is a corresponding set of RNA splicing switches. Here, we used RNAseq of mouse testis to identify changes associated with the progression from mitotic spermatogonia to meiotic spermatocytes. We identified ∼150 splicing switches, most of which affect conserved protein-coding exons.
View Article and Find Full Text PDFMammalian tissues display a remarkable complexity of splicing patterns. Nevertheless, only few examples of tissue-specific splicing regulators are known. Herein, we characterize a novel splicing regulator named RBM11, which contains an RNA Recognition Motif (RRM) at the amino terminus and a region lacking known homology at the carboxyl terminus.
View Article and Find Full Text PDFPancreatic endocrine tumours (PETs) are rare and heterogeneous neoplasms, often diagnosed at metastatic stage, for which no cure is currently available. Recently, activation of two pathways that support proliferation and invasiveness of cancer cells, the Src family kinase (SFK) and mammalian target of rapamycin (mTOR) pathways, was demonstrated in PETs. Since both pathways represent suitable targets for therapeutic intervention, we investigated their possible interaction in PETs.
View Article and Find Full Text PDFSpinal Muscular Atrophy (SMA) is a neurodegenerative disease with high impact in the human population, being the leading genetic cause of death in infancy. No cure is currently available for SMA, raising interest in the development of novel therapeutic strategies for this disease. Much of the effort in this sense has been aimed at increasing the SMN2-derived transcript levels, either by improving transcription rate or by reprogramming exon 7 splicing.
View Article and Find Full Text PDFEpithelial-to-mesenchymal transition (EMT) and its reversal (MET) are crucial cell plasticity programs that act during development and tumor metastasis. We have previously shown that the splicing factor and proto-oncogene SF2/ASF impacts EMT/MET through production of a constitutively active splice variant of the Ron proto-oncogene. Using an in vitro model, we now show that SF2/ASF is also regulated during EMT/MET by alternative splicing associated with the nonsense-mediated mRNA decay pathway (AS-NMD).
View Article and Find Full Text PDFTranslation of stored mRNAs accounts for protein synthesis during the transcriptionally inactive stages of spermatogenesis. A key step in mRNA translation is the assembly of the initiation complex EIF4F, which is regulated by the MTOR (mammalian target of rapamycin) and MNK1/2 (MAP kinase-interacting kinase 1 and 2) pathways. We investigated the expression and activity of regulatory proteins of these pathways in male germ cells at different stages of differentiation.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. An almost identical SMN2 gene is unable to compensate for this deficiency because a single C-to-T transition at position +6 in exon-7 causes skipping of the exon by a mechanism not yet fully elucidated. We observed that the C-to-T transition in SMN2 creates a putative binding site for the RNA-binding protein Sam68.
View Article and Find Full Text PDFHuman cyclin D1 is expressed as two isoforms derived by alternate RNA splicing, termed D1a and D1b, which differ for the inclusion of intron 4 in the D1b mRNA. Both isoforms are frequently upregulated in human cancers, but cyclin D1b displays relatively higher oncogenic potential. The splicing factors that regulate alternative splicing of cyclin D1b remain unknown despite the likelihood that they contribute to cyclin D1 oncogenicity.
View Article and Find Full Text PDF