Microplastics (MPs) are now ubiquitous environmental contaminants that lead to unavoidable human exposure; they have received increasing attention in recent years and have become an emerging area of research. The greatest concern is the negative impacts of MPs on marine, fresh-water, and terrestrial ecosystems, as well as human health, to the extent that the World Health Organization (WHO) calls for increased research and standardized methods to assess exposure to MPs. Many countries and international organizations are implementing or proposing legislation in this regard.
View Article and Find Full Text PDFMicroplastics (MP) have become a well-known and widely investigated environmental pollutant. Despite the huge amount of new studies investigating the potential threat posed by MP, the possible uptake and trophic transfer in lower trophic levels of freshwater ecosystems remains understudied. This study aims to investigate the internalization and potential trophic transfer of fluorescent polystyrene (PS) beads (0.
View Article and Find Full Text PDFPlastic pollution is considered one of the causes of global change. However, water soluble synthetic polymers (WSSPs) have been neglected so far, although they are used in several industrial, dietary, domestic and biomedical products. Moreover, they are applied in wastewater treatment plants (WWTPs) as flocculants and coagulant agents.
View Article and Find Full Text PDFExposure to the antimicrobial agent Triclosan (TCS) induces oxidative stress in diverse organisms, including birds. However, whether TCS-induced oxidative stress effectively translates into detrimental effects is still unclear. The present study examined whether prenatal TCS exposure induces oxidative stress and telomere shortening in the brain and the liver of near-term embryos of the yellow-legged gull (Larus michahellis).
View Article and Find Full Text PDFMethamphetamine (METH) is a central nervous system stimulant drug whose use has increased in the last few years worldwide. After the ingestion of even a single dose, METH is excreted by the organism and enters the aquatic ecosystems, whereby concentrations up to hundreds of ng/L were measured in both sewage and surface waters. Although the environmental concentrations are currently quite low, the high biological activity of METH might cause adverse effects towards non-target organisms.
View Article and Find Full Text PDF