Publications by authors named "Simona Giorgi"

Background: Dravet syndrome (DS) is a rare developmental and epileptic encephalopathy that presents with frequent and prolonged seizures resistant to treatment as well as cognitive problems such as behavioral and developmental delays. However, there is a lack of scientific literature on the impact of this condition on caregivers and the family unit.

Objectives: To find out the social and emotional impact of DS on the family unit, to provide a comprehensive understanding of the disease's effects on both the family and caregivers.

View Article and Find Full Text PDF

Background: Dravet syndrome (DS) is a rare and severe form of epilepsy that begins in infancy, which is primarily caused by pathogenic variants in the SCN1A gene. DS is characterized by prolonged and frequent drug-resistant seizures, as well as developmental delays and behavioral problems. The identification of these comorbidities is based on clinical interview and relies on healthcare professionals (HCPs) experience.

View Article and Find Full Text PDF

Objectives: Dravet syndrome (DS) is a rare form of refractory epilepsy that begins in the first year of life. Approximately 85% of patients have a mutation in the SCN1A gene, which encodes a voltage-gated sodium channel. The main objective of the present work was to assess the degree of knowledge of DS among Spanish primary care (PC) professionals, the communication flow between them and the pediatric neurologists (PNs), and the services available and resources offered to patients in Spain when searching for a diagnosis and adequate treatment.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a genetic rare disease, which is usually caused by a mutation in the SCN1A gene. DS is characterised by a drug-resistant epilepsy and by cognitive and behavioural disturbances. Thus, DS patients require both pharmacological and non-pharmacological treatments.

View Article and Find Full Text PDF

Neurosensory disorders such as pain and pruritus remain a major health problem greatly impacting the quality of life, and often increasing the risk of mortality. Current pre-clinical models to investigate dysfunction of sensory neurons have shown a limited clinical translation, in part, by failing to mimic the compartmentalized nociceptor anatomy that exhibits a central compartment containing the soma and a peripheral one harboring the axon endings with distinct molecular and cellular environmental composition. Thus, there is a need to validate compartmentalized preclinical neurosensory models for investigating the pathophysiology of peripheral sensory disorders and to test drug candidates.

View Article and Find Full Text PDF

TRPA1 and TRPM8 are transient receptor potential channels expressed in trigeminal neurons that are related to pathophysiology in migraine models. Here we use a mouse model of nitroglycerine-induced chronic migraine that displays a sexually dimorphic phenotype, characterized by mechanical hypersensitivity that develops in males and females, and is persistent up to day 20 in female mice, but disappears by day 18 in male mice. TRPA1 is required for development of hypersensitivity in males and females, whereas TRPM8 contributes to the faster recovery from hypersensitivity in males.

View Article and Find Full Text PDF

Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction.

View Article and Find Full Text PDF