Rationale: Smoking and inflammation contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD), which involves changes in extracellular matrix. This is thought to contribute to airway remodeling and airflow obstruction. We have previously observed that long-term treatment with inhaled corticosteroids can not only reduce bronchial inflammation, but can also attenuate lung function decline in moderate-severe COPD.
View Article and Find Full Text PDFMultidrug resistance-associated protein-1 (MRP1) reduces the oxidative stress generated by smoking, a risk factor for Chronic Obstructive Pulmonary Disease (COPD). We previously showed that MRP1 variants are associated with the level and decline of annual forced expiratory volume in one second (FEV(1)) in the general population. Moreover, we showed that MRP1 variants are also associated with FEV(1) level and inflammatory markers in COPD patients.
View Article and Find Full Text PDFToll-like receptors (TLRs) participate in the defence against bacterial infections that are common in patients with Chronic Obstructive Pulmonary Disease (COPD). We studied all tagging SNPs in TLR2 and TLR4 and their associations with the level and change over time of both FEV(1) and sputum inflammatory cells in moderate-to-severe COPD. Nine TLR2 SNPs and 17 TLR4 SNPs were genotyped in 110 COPD patients.
View Article and Find Full Text PDFGenome-wide association studies identified single nucleotide polymorphisms (SNPs) in the nicotinic acetylcholine receptors (nAChRs) cluster as a risk factor for nicotine dependency and COPD. We investigated whether SNPs in the nAChR cluster are associated with smoking habits and lung function decline, and if these potential associations are independent of each other. The SNPs rs569207, rs1051730 and rs8034191 in the nAChR cluster were analyzed in the Vlagtwedde-Vlaardingen cohort (n = 1,390) that was followed for 25 years.
View Article and Find Full Text PDFBackground: Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD.
View Article and Find Full Text PDFBackground: Multidrug resistance-associated protein-1 (MRP1) protects against oxidative stress and toxic compounds generated by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease (COPD). We have previously shown that single nucleotide polymorphisms (SNPs) in MRP1 significantly associate with level of FEV1 in two independent population based cohorts. The aim of our study was to assess the associations of MRP1 SNPs with FEV1 level, MRP1 protein levels and inflammatory markers in bronchial biopsies and sputum of COPD patients.
View Article and Find Full Text PDF