Publications by authors named "Simona Delsante"

Abscisic acid (ABA) is a conserved 'stress hormone' in unicellular organisms, plants and animals. In mammals, ABA and its receptors LANCL1 and LANCL2 stimulate insulin-independent cell glucose uptake and oxidative metabolism: overexpression of LANCL1/2 increases, and their silencing conversely reduces, mitochondrial number, respiration and proton gradient dissipation in muscle cells and in brown adipocytes. We hypothesized that the ABA/LANCL hormone/receptors system could be involved in thermogenesis.

View Article and Find Full Text PDF

The design of processing routes involving the presence of the liquid phase is mainly associated with the knowledge of its surface and transport properties. Despite this need, due to experimental difficulties related to high temperature measurements of metallic melts, for many alloy systems neither thermodynamic nor thermophysical properties data are available. A good example of a system lacking these datasets is the Ir-Si system, although over the last fifty years, the structures and properties of its solid phases have been widely investigated.

View Article and Find Full Text PDF

To properly design and optimize liquid-assisted processes, such as reactive infiltration for fabricating lightweight and corrosion resistant SiC/TiSi composites, the extensive knowledge about the interfacial phenomena taking place when liquid Si-rich Si-Ti alloys are in contact with glassy carbon (GC) is of primary importance. To this end, the wettability of GC by two different Si-rich Si-Ti alloys was investigated for the first time by both the sessile and pendant drop methods at = 1450 °C. The results obtained, in terms of contact angle values, spreading kinetics, reactivity, and developed interface microstructures, were compared with experimental observations previously obtained for the liquid Si-rich Si-Ti eutectics processed under the same operating conditions.

View Article and Find Full Text PDF

A commercially available glass-ceramic composition is applied on a ferritic stainless steel (FSS) substrate reproducing a type of interface present in solid oxide fuel cells (SOFCs) stacks. Electrochemical impedance spectroscopy (EIS) is used to study the electrical response of the assembly in the temperature range of 380-780 °C and during aging for 250 h at 780 °C. Post-experiment analyses, performed by means of X-ray diffraction (XRD), and along cross-sections by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, highlight the microstructural changes promoted by aging conditions over time.

View Article and Find Full Text PDF

This work presents a comprehensive analysis of the structural and vibrational properties of the kesterite CuZnSnS (CZTS, I4̅ space group) as well as its polymorphs with the space groups P4̅2c and P4̅2m, from both experimental and theoretical point of views. Multiwavelength Raman scattering measurements performed on bulk CZTS polycrystalline samples were utilized to experimentally determine properties of the most intense Raman modes expected in these crystalline structures according to group theory analysis. The experimental results compare well with the vibrational frequencies that have been computed by first-principles calculations based on density functional theory.

View Article and Find Full Text PDF

Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (CuZnSnS) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited.

View Article and Find Full Text PDF

Metallic silver, copper, and Ag-Cu nanoparticles (NPs) have been produced by a chemical reduction method. The obtained nanoparticles were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). A side-segregated configuration was observed for the one-pot synthesized Ag-Cu NPs, and the melting temperature depression of about 14 °C was found by differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

In the present study standard enthalpies of formation were measured by reaction and solution calorimetry at stoichiometric compositions of CdPr, CdPr, CdPr and CdPr. The corresponding values were determined to be -46.0, -38.

View Article and Find Full Text PDF