In this paper, we prove some inequalities between intrinsic and extrinsic curvature invariants, namely the normalized δ-Casorati curvatures and the scalar curvature of statistical submanifolds in Kenmotsu statistical manifolds of constant ϕ-sectional curvature that are endowed with semi-symmetric metric connection. Furthermore, we investigate the equality cases of these inequalities. We also describe an illustrative example.
View Article and Find Full Text PDFThe purpose of this article is to establish some inequalities concerning the normalized δ-Casorati curvatures (extrinsic invariants) and the scalar curvature (intrinsic invariant) of totally real spacelike submanifolds in statistical manifolds of the type para-Kähler space form. Moreover, this study is focused on the equality cases in these inequalities. Some examples are also provided.
View Article and Find Full Text PDFIn this article, we consider statistical submanifolds of Kenmotsu statistical manifolds of constant ϕ-sectional curvature. For such submanifold, we investigate curvature properties. We establish some inequalities involving the normalized δ-Casorati curvatures (extrinsic invariants) and the scalar curvature (intrinsic invariant).
View Article and Find Full Text PDF