Publications by authors named "Simona Capone"

Horseradish peroxidase (HRP), conjugated to antibodies and lectins, is widely used in medical diagnostics. Since recombinant production of the enzyme is difficult, HRP isolated from plant is used for these applications. Production in the yeast Pichia pastoris (P.

View Article and Find Full Text PDF

Background: Recombinant protein production in the yeast Pichia pastoris is usually based on the alcohol oxidase promoters pAOX1 and pAOX2, which are regulated by methanol and strongly repressed by other C-sources, like glycerol and glucose. However, the use of methanol brings several disadvantages, which is why current trends in bioprocess development with P. pastoris are focussing on minimizing the required amount of methanol or even avoid its employment.

View Article and Find Full Text PDF

Background: Insufficient incorporation of heme is considered a central impeding cause in the recombinant production of active heme proteins. Currently, two approaches are commonly taken to overcome this bottleneck; metabolic engineering of the heme biosynthesis pathway in the host organism to enhance intracellular heme production, and supplementation of the growth medium with the desired cofactor or precursors thereof to allow saturation of recombinantly produced apo-forms of the target protein. In this study, we investigated the effect of both, pathway engineering and medium supplementation, to optimize the recombinant production of the heme protein horseradish peroxidase in the yeast Pichia pastoris.

View Article and Find Full Text PDF

When the glycosylated plant enzyme horseradish peroxidase (HRP) is conjugated to specific antibodies, it presents a powerful tool for medical applications. The isolation and purification of this enzyme from plant is difficult and only gives low yields. However, HRP recombinantly produced in the yeast Pichia pastoris experiences hyperglycosylation, which impedes the use of this enzyme in medicine.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) and antibody fragments represent the most important biopharmaceutical products today. Because full length antibodies are glycosylated, mammalian cells, which allow human-like N-glycosylation, are currently used for their production. However, mammalian cells have several drawbacks when it comes to bioprocessing and scale-up, resulting in long processing times and elevated costs.

View Article and Find Full Text PDF