Publications by authors named "Simon-Blecher N"

Organismal communities associated with coral reefs, particularly invertebrates and microbes, play crucial roles in ecosystem maintenance and coral health. Here, we characterized the organismal composition of a healthy, non-urbanized reef (Site A) and a degraded, urbanized reef (Site B) in the Gulf of Eilat/Aqaba, Red Sea to assess its impact on coral health and physiology. Biomimetically designed terracotta tiles were conditioned for 6 months at both sites, then reciprocally transplanted, and scleractinian coral species, Acropora eurystoma and Stylophora pistillata, were attached for an additional 6 months.

View Article and Find Full Text PDF

The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown.

View Article and Find Full Text PDF

Quantifying coral reef biodiversity is challenging for cryptofauna and organisms in early life stages. We demonstrate the utility of eDNA metabarcoding as a tool for comprehensively evaluating invertebrate communities on complex 3D structures for reef reformation, and the role these structures play in provisioning habitat for organisms. 3D design and printing were used to create 18 complex tiles, which were used to form artificial reef structures.

View Article and Find Full Text PDF

Coral reefs are in global decline due to climate change and anthropogenic influences (Hughes et al., Conservation Biology, 27: 261-269, 2013). Near coastal cities or other densely populated areas, coral reefs face a range of additional challenges.

View Article and Find Full Text PDF

Urbanized coral reefs are often chronically affected by sedimentation and reduced light levels, yet many species of corals appear to be able to thrive under these highly disturbed conditions. Recently, these marginal ecosystems have gained attention as potential climate change refugia due to the shading effect of suspended sediment, as well as potential reservoirs for stress-tolerant species. However, little research exists on the impact of sedimentation on coral physiology, particularly at the molecular level.

View Article and Find Full Text PDF

Poli's stellate barnacle, Poli, populates the Mediterranean Sea, the North-Eastern Atlantic coasts, and the offshore Eastern Atlantic islands. Previous studies have found apparent genetic differences between the Atlantic and the Mediterranean populations of , suggesting possible geological and oceanographic explanations for these differences. We have studied the genetic diversity of 14 populations spanning from the Eastern Atlantic to the Eastern Mediterranean, using two nuclear genes sequences revealing a total of 63 polymorphic sites.

View Article and Find Full Text PDF

Organisms' survival is associated with the ability to respond to natural or anthropogenic environmental stressors. Frequently, these responses involve changes in gene regulation and expression, consequently altering physiology, development, or behavior. Here, we present modifications in response to heat exposure that mimics extreme summertime field conditions of lab-cultured and field-conditioned .

View Article and Find Full Text PDF

Barnacles of the genus are commonly encountered rocky intertidal shores. The phylogeography of the different species in the Western Indian Ocean is unclear. Using morphological characteristics as well as the molecular markers mitochondrial cytochrome oxygenase subunit I (COI) and the nuclear sodium-potassium ATPase (NaKA), we identified four clades representing four species in the Western Indian Ocean and its adjacent seas.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Background: Aquatic subterranean species often exhibit disjunct distributions, with high level of endemism and small range, shaped by vicariance, limited dispersal, and evolutionary rates. We studied the disjunct biogeographic patterns of an endangered blind cave shrimp, , and identified the geological and evolutionary processes that have shaped its divergence pattern.

Methods: We collected specimens of three species (, , and ), originating from subterranean groundwater caves by the Mediterranean Sea, and used three mitochondrial genes (12S, 16S, cytochrome oxygnese subunit 1 (COI)) and four nuclear genes (18S, 28S, internal transcribed spacer, Histon 3) to infer their phylogenetic relationships.

View Article and Find Full Text PDF

Intertidal inhabitants are exposed to the 24-hour solar day, and the 12.4 hour rising and falling of the tides. One or both of these cycles govern intertidal organisms' behaviour and physiology, yet little is known about the molecular clockworks of tidal rhythmicity.

View Article and Find Full Text PDF

Endogenous circadian clocks are poorly understood within early-diverging animal lineages. We have characterized circadian behavioral patterns and identified potential components of the circadian clock in the starlet sea anemone, Nematostella vectensis: a model cnidarian which lacks algal symbionts. Using automatic video tracking we showed that Nematostella exhibits rhythmic circadian locomotor activity, which is persistent in constant dark, shifted or disrupted by external dark/light cues and maintained the same rate at two different temperatures.

View Article and Find Full Text PDF

The Balanomorpha are the largest group of barnacles and rank among the most diverse, commonly encountered and ecologically important marine crustaceans in the world. Paradoxically, despite their relevance and extensive study for over 150years, their evolutionary relationships are still unresolved. Classical morphological systematics was often based on non-cladistic approaches, while modern phylogenetic studies suffer from severe undersampling of taxa and characters (both molecular and morphological).

View Article and Find Full Text PDF

Barnacles of the superfamily Coronuloidea are obligate epibionts of various marine mammals, marine reptiles and large crustaceans. We used five molecular markers: 12S rDNA, 16S rDNA, 18S rDNA, 28S rDNA and Histone 3 to infer phylogenetic relationships among sixteen coronuloids, representing most of the recent genera of barnacles of this superfamily. Our analyses confirm the monophyly of Coronuloidea and that this superfamily and Tetraclitoidea are sister groups.

View Article and Find Full Text PDF

The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids.

View Article and Find Full Text PDF
Article Synopsis
  • The study observes unique developmental processes in the chordate Botryllus schlosseri, where a colony regenerates from its vascular system after surgical removal of its buds and zooids.
  • Through in vivo imaging and histological analysis, researchers found that the regeneration involved morphologically abnormal developmental stages, differing from typical asexual reproduction methods.
  • The research highlights the eventual return to normal form, suggesting a different asexual reproduction pathway that could aid in understanding how various developmental programs can lead to the same body structure.
View Article and Find Full Text PDF

Coral bleaching is caused by the loss of symbiont zooxanthellae and/or decrease in their pigments. Since the algal symbionts provide the energy basis for corals and whole reefs, their loss or impairment of function leads to widespread mortality. This phenomenon has been documented numerous times in recent years, and has extensively damaged coral reefs all over the world.

View Article and Find Full Text PDF

If fulminate rejection in allogeneic and xenogeneic engraftments is not an evolutionary relict feature, then any treatment that ablates the host surveillance's effector arms capabilities and eliminates graft vs. host reactivity should induce donor chimerism in transplant settings. We demonstrate here marked proliferative response of Botryllus (Urochordata) blood cells months following their infusions (2x10(4)-10(5) blood cells per host) into the concordant xenogeneic environment of irradiated Botrylloides soma.

View Article and Find Full Text PDF