Cancer cells edit gene expression to evade immunosurveillance. However, genome-wide studies of gene editing during early tumorigenesis are lacking. Here we used single-cell RNA sequencing in a breast cancer genetically engineered mouse model (GEMM) to identify edited genes without bias.
View Article and Find Full Text PDFAnimals sense and adapt to decreased oxygen availability, but whether and how hypoxia exposure in ancestors can elicit phenotypic consequences in normoxia-reared descendants are unclear. We show that hypoxia educes an intergenerational reduction in lipids and a transgenerational reduction in fertility in the nematode Caenorhabditis elegans. The transmission of these epigenetic phenotypes is dependent on repressive histone-modifying enzymes and the argonaute HRDE-1.
View Article and Find Full Text PDFHypoxia is a potent endocrine disruptor that is posing serious problems to the fish reproductive systems. Our previous studies reported that hypoxia could cause a transgenerational impairment of ovarian development and interfere hatching success in F2 offspring of marine medaka fish (Oryzias melastigma) through epigenetic regulation. As part of the epigenetic regulation, we investigated the involvement of microRNAs (miRNAs) in hypoxia-induced transgenerational reproductive impairments.
View Article and Find Full Text PDFBackground: The evolution of multicellularity is a critical event that remains incompletely understood. We use the social amoeba, Dictyostelium discoideum, one of the rare organisms that readily transits back and forth between both unicellular and multicellular stages, to examine the role of epigenetics in regulating multicellularity.
Results: While transitioning to multicellular states, patterns of H3K4 methylation and H3K27 acetylation significantly change.
During stress, global translation is reduced, but specific transcripts are actively translated. How stress-responsive mRNAs are selectively translated is unknown. We show that METL-5 methylates adenosine 1717 on 18 ribosomal RNA in , enhancing selective ribosomal binding and translation of specific mRNAs.
View Article and Find Full Text PDFHypoxia, a low environmental oxygen level, is a common problem in the ocean globally. Hypoxia has been known to cause disruption to the endocrine system of marine organisms in both laboratory and field studies. Our previous studies have demonstrated the sex-specific response to hypoxia in the neural and reproductive systems of marine fish.
View Article and Find Full Text PDFCurr Opin Neurobiol
December 2019
Inherited information not encoded in the DNA sequence can regulate a variety of complex phenotypes. However, how this epigenetic information escapes the typical epigenetic erasure that occurs upon fertilization and how it regulates behavior is still unclear. Here we review recent examples of brain related transgenerational epigenetic inheritance and delineate potential molecular mechanisms that could regulate how non-genetic information could be transmitted.
View Article and Find Full Text PDFThe biological roles of nucleic acid methylation, other than at the C5-position of cytosines in CpG dinucleotides, are still not well understood. Here, we report genetic evidence for a critical role for the putative DNA demethylase NMAD-1 in regulating meiosis in C. elegans.
View Article and Find Full Text PDFBackground: Directed DNA methylation on N6-adenine (6mA), N4-cytosine (4mC), and C5-cytosine (5mC) can potentially increase DNA coding capacity and regulate a variety of biological functions. These modifications are relatively abundant in bacteria, occurring in about a percent of all bases of most bacteria. Until recently, 5mC and its oxidized derivatives were thought to be the only directed DNA methylation events in metazoa.
View Article and Find Full Text PDFHypoxia is a pressing environmental problem in both marine and freshwater ecosystems globally, and this problem will be further exacerbated by global warming in the coming decades. Recently, we reported that hypoxia can cause transgenerational impairment of sperm quality and quantity in fish (in F0, F1, and F2 generations) through DNA methylome modifications. Here, we provide evidence that female fish ( Oryzias melastigma) exposed to hypoxia exhibit reproductive impairments (follicle atresia and retarded oocyte development), leading to a drastic reduction in hatching success in the F2 generation of the transgenerational group, although they have never been exposed to hypoxia.
View Article and Find Full Text PDFThere are over 400 hypoxic zones in the ocean worldwide. Both laboratory and field studies have shown that hypoxia causes endocrine disruption and reproductive impairments in vertebrates. More importantly, our recent study discovered that parental (F0) hypoxia exposure resulted in the transgenerational impairment of sperm quality in the F2 generation through the epigenetic regulation of germ cells.
View Article and Find Full Text PDFHypoxia is a global environmental concern and poses a significant threat to aquatic ecosystems, including the sustainability of natural fish populations. The deleterious effects of hypoxia on fish reproductive fitness, as mediated by disruption of sex hormones and gene expression along the Brain-Pituitary-Gonad axis, have been well documented. Recently, we further demonstrated that the observed disruption of steroidogenesis in the ovary of marine medaka Oryzias melastigma is mediated through microRNAs (miRNAs).
View Article and Find Full Text PDFHypoxia is amongst the most widespread and pressing problems in aquatic environments. Here we demonstrate that fish (Oryzias melastigma) exposed to hypoxia show reproductive impairments (retarded gonad development, decrease in sperm count and sperm motility) in F1 and F2 generations despite these progenies (and their germ cells) having never been exposed to hypoxia. We further show that the observed transgenerational reproductive impairments are associated with a differential methylation pattern of specific genes in sperm of both F0 and F2 coupled with relevant transcriptomic and proteomic alterations, which may impair spermatogenesis.
View Article and Find Full Text PDFHypoxia, an endocrine disruptor, affects synthesis and balance of sex steroid hormones, leading to reproductive impairment in both female and male fish. Cumulating reports demonstrated the alternation of hypothalamus-pituitary-gonad axis (HPG-axis) by hypoxia. However, the detail mechanism underlying how hypoxia may alter other brain functions remains largely unknown.
View Article and Find Full Text PDFBackground: The marine medaka Oryzias melastigma has been demonstrated as a novel model for marine ecotoxicological studies. However, the lack of genome and transcriptome reference has largely restricted the use of O. melastigma in the assessment of in vivo molecular responses to environmental stresses and the analysis of biological toxicity in the marine environment.
View Article and Find Full Text PDF