Publications by authors named "Simon Y Tang"

Objective: Inadequate repair of the intervertebral disc (IVD) contributes to low back pain. Infiltrating immune cells into damaged tissues are critical mediators of repair, yet little is known about the identities, roles, and temporal regulation following IVD injury. By analyzing transcripts of immune cell markers, histopathologic analysis, immunofluorescence, and flow cytometry, we aimed to define the temporal cascade of infiltrating immune cells and their associations with IVD degeneration.

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration contributes to disabling back pain. Degeneration can be initiated by injury and progressively leads to irreversible cell loss and loss of IVD function. Attempts to restore IVD function through cell replacement therapies have had limited success due to knowledge gaps in critical cell populations and molecular crosstalk after injury.

View Article and Find Full Text PDF

The chronic inflammation present in type 2 diabetes causes many chronic inflammatory comorbidities, including cardiovascular, renal, and neuropathic complications. Type 2 diabetes is also associated with a number of spinal pathologies, including intervertebral disc (IVD) degeneration and chronic neck and back pain. Although confounding factors such as obesity are thought to increase the loads to the musculoskeletal system and subsequent degeneration, studies have shown that even after adjusting age, body mass index, and genetics (e.

View Article and Find Full Text PDF

Inflammatory cytokine production and de novo neurovascularization have been identified in painful, degenerated intervertebral discs (IVDs). However, the temporal trajectories of these key pathoanatomical features, including the cascade of inflammatory chemokines and neo- vessel and neurite infiltration, and their associations with IVD degeneration, remain relatively unknown. Investigating this process in the caudal mouse IVD enables the opportunity to study the tissue-specific response without confounding inflammatory signaling from neighboring structures.

View Article and Find Full Text PDF

Academic researchers faced a multitude of challenges posed by the COVID-19 pandemic, including widespread shelter-in-place orders, workplace closures, and cessation of in-person meetings and laboratory activities. The extent to which these challenges impacted musculoskeletal researchers, specifically, is unknown. We developed an anonymous web-based survey to determine the pandemic's impact on research productivity and career prospects among musculoskeletal research trainees and faculty.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes ( and ) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty.

View Article and Find Full Text PDF

The fracture behavior of bone is critically important for evaluating its mechanical competence and ability to resist fractures. Fracture toughness is an intrinsic material property that quantifies a material's ability to withstand crack propagation under controlled conditions. However, properly conducting fracture toughness testing requires the access to calibrated mechanical load frames and the destructive testing of bone samples, and therefore fracture toughness tests are clinically impractical.

View Article and Find Full Text PDF

Inadequate repair of injured intervertebral discs (IVD) leads to degeneration and contributes to low back pain. Infiltrating immune cells into damaged musculoskeletal tissues are critical mediators of repair, yet little is known about their identities, roles, and temporal regulation following IVD injury. By analyzing longitudinal changes in gene expression, tissue morphology, and the dynamics of infiltrating immune cells following injury, we characterize sex-specific differences in immune cell populations and identify the involvement of previously unreported immune cell types, γδ and NKT cells.

View Article and Find Full Text PDF

Non-specific lower back pain (LBP) is a world-wide public health problem that affects people of all ages. Despite the high prevalence of non-specific LBP and the associated economic burdens, the pathoanatomical mechanisms for the development and course of the condition remain unclear. While intervertebral disc degeneration (IDD) is associated with LBP, there is overlapping occurrence of IDD in symptomatic and asymptomatic individuals, suggesting that degeneration alone cannot identify LBP populations.

View Article and Find Full Text PDF

Background: The ion channel transient receptor potential vanilloid 4 (TRPV4) critically transduces mechanical forces in the IVD, and its inhibition can prevent IVD degeneration due to static overloading. However, it remains unknown whether different modes of loading signals through TRPV4 to regulate the expression of inflammatory cytokines. We hypothesized that TRPV4 signaling is essential during static and dynamic loading to mediate homeostasis and mechanotransduction.

View Article and Find Full Text PDF

Although there is ample literature available on toxicity in games, as there is regarding trolling on social media, there are few to no cross-platform studies on toxicity and trolling. In other words, the extant literature focuses on one platform at a time instead of comparing and contrasting them. The present work aims to rectify this gap by analyzing interviews from a larger study of 22 self-proclaimed victims of in-game trolling to not only determine whether social media or gaming communities are considered more toxic but also to explore how definitions of the word 'trolling' change depending on the platform in question.

View Article and Find Full Text PDF

The fracture behavior of bone is critically important for assessing its mechanical competence and ability to resist fractures. Fracture toughness, which quantifies a material's resistance to crack propagation under controlled geometry, is regarded as the gold standard for evaluating a material's resistance to fracture. However properly conducting this test requires access to calibrated mechanical load frames the destruction of the bone samples, making it impractical for obtaining clinical measurement of bone fracture.

View Article and Find Full Text PDF

The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects.

View Article and Find Full Text PDF

Purpose: Bullying, harassment, and discrimination (BHD) are prevalent in academic, scientific, and clinical departments, particularly orthopedic surgery, and can have lasting effects on victims. As it is unclear how BHD affects musculoskeletal (MSK) researchers, the following study assessed BHD in the MSK research community and whether the COVID-19 pandemic, which caused hardships in other industries, had an impact.

Methods: A web-based anonymous survey was developed in English by ORS Spine Section members to assess the impact of COVID-19 on MSK researchers in North America, Europe, and Asia, which included questions to evaluate the personal experience of researchers regarding BHD.

View Article and Find Full Text PDF
Article Synopsis
  • Intervertebral disc degeneration is a major contributor to low back pain and necessitates effective preclinical research models to improve treatments.
  • Both in vivo animal models and ex vivo organ culture models are commonly used, but each has its own strengths and weaknesses, leading to ongoing debates among researchers.
  • Experts, through a literature review, emphasize that using a combination of various models may yield the best research outcomes by capitalizing on the unique benefits of each approach.
View Article and Find Full Text PDF

While it is well known that mechanical signals can either promote or disrupt intervertebral disc (IVD) homeostasis, the molecular mechanisms for transducing mechanical stimuli are not fully understood. The transient receptor potential vanilloid 4 (TRPV4) ion channel activated in isolated IVD cells initiates extracellular matrix (ECM) gene expression, while TRPV4 ablation reduces cytokine production in response to circumferential stretching. However, the role of TRPV4 on ECM maintenance during tissue-level mechanical loading remains unknown.

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration is characterized by a loss of cellularity, and changes in cell-mediated activity that drives anatomic changes to IVD structure. In this study, we used single-cell RNA-sequencing analysis of degenerating tissues of the rat IVD following lumbar disc puncture. Two control, uninjured IVDs (L2-3, L3-4) and two degenerated, injured IVDs (L4-5, L5-6) from each animal were examined either at the two- or eight-week post-operative time points.

View Article and Find Full Text PDF

Quantitative magnetic resonance imaging (qMRI) measures have provided insights into the composition, quality, and structure-function of musculoskeletal tissues. Low signal-to-noise ratio has limited application to tendon. Advances in scanning sequences and sample positioning have improved signal from tendon allowing for evaluation of structure and function.

View Article and Find Full Text PDF

A targeted injury to the mouse intervertebral disc (IVD) is often used to recapitulate the degenerative cascade of the human pathology. Since injuries can vary in magnitude and localization, it is critical to examine the effects of different injuries on IVD degeneration. We thus evaluated the degenerative progression resulting from either a partial- or full-width injury to the mouse lumbar IVD using contrast-enhanced micro-computed tomography and histological analyses.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2D) is an increasingly prevalent disease with numerous comorbidities including many in the spine. T2D is strongly linked with vertebral fractures, intervertebral disc (IVD) degeneration, and severe chronic spinal pain. Yet the causative mechanism for these musculoskeletal impairments remains unclear.

View Article and Find Full Text PDF

Introduction: Diabetes has long been implicated as a major risk factor for intervertebral disc (IVD) degeneration, interfering with molecular signaling and matrix biochemistry, which ultimately aggravates the progression of the disease. Glucose content has been previously shown to influence structural and compositional changes in engineered discs in vitro, impeding fiber formation and mechanical stability.

Methods: In this study, we investigated the impact of diabetic hyperglycemia on young IVDs by assessing biochemical composition, collagen fiber architecture, and mechanical behavior of discs harvested from 3- to 4-month-old db/db mouse caudal spines.

View Article and Find Full Text PDF

Diabetes is associated with impaired tendon homeostasis and subsequent tendon dysfunction, but the mechanisms underlying these associations is unclear. Advanced glycation end-products (AGEs) accumulate with diabetes and have been suggested to alter tendon function. In vivo imaging in humans has suggested collagen disorganization is more frequent in individuals with diabetes, which could also impair tendon mechanical function.

View Article and Find Full Text PDF

Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross-linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic-loading fatigue life, we conducted total-body, acute, gamma-irradiation experiments on skeletally mature (17-week-old) C57BL/6J male mice ( = 84).

View Article and Find Full Text PDF

Mice have been increasingly used as preclinical model to elucidate mechanisms and test therapeutics for treating intervertebral disc degeneration (IDD). Several intervertebral disc (IVD) histological scoring systems have been proposed, but none exists that reliably quantitate mouse disc pathologies. Here, we report a new robust quantitative mouse IVD histopathological scoring system developed by building consensus from the spine community analyses of previous scoring systems and features noted on different mouse models of IDD.

View Article and Find Full Text PDF

Background: Existing predictive outcomes models for type 2 diabetes developed and validated in historical European populations may not be applicable for East Asian populations due to differences in the epidemiology and complications. Despite the continuum of risk across the spectrum of risk factor values, existing models are typically limited to diabetes alone and ignore the progression from prediabetes to diabetes. The objective of this study is to develop and externally validate a patient-level simulation model for prediabetes and type 2 diabetes in the East Asian population for predicting lifetime health outcomes.

View Article and Find Full Text PDF