Jet engines are important contributors to global CO emissions and release enormous numbers of ultrafine particles into different layers of the atmosphere. As a result, aviation emissions are affecting atmospheric chemistry and promote contrail and cloud formation with impacts on earth's radiative balance and climate. Furthermore, the corelease of nanoparticles together with carcinogenic polycyclic aromatic hydrocarbons (PAHs) affects air quality at airports.
View Article and Find Full Text PDFLinB is a haloalkane dehalogenase found in Sphingobium indicum B90A, an aerobic bacterium isolated from contaminated soils of hexachlorocyclohexane (HCH) dumpsites. We showed that this enzyme also converts hexabromocyclododecanes (HBCDs). Here we give new insights in the kinetics and stereochemistry of the enzymatic transformation of δ-HBCD, which resulted in the formation of two pentabromocyclododecanols (PBCDols) as first- (P, P) and two tetrabromocyclododecadiols (TBCDdiols) as second-generation products (T, T).
View Article and Find Full Text PDFLinA2, a bacterial enzyme expressed in various Sphingomonadaceae, catalyzes the elimination of HCl from hexachlorocyclohexanes (HCHs) and, as discussed here, the release of HBr from certain hexabromocyclododecanes (HBCDs). Both classes of compounds are persistent organic pollutants now regulated under the Stockholm Convention. LinA2 selectively catalyzes the transformation of β-HBCDs; other stereoisomers like α-, γ-, and δ-HBCDs are not converted.
View Article and Find Full Text PDFHexabromocyclododecanes (HBCDs) and hexachlorocyclohexanes (HCHs) are lipophilic, polyhalogenated hydrocarbons with comparable stereochemistry. Bacterial evolution in HCH-contaminated soils resulted in the development of several Spingomonadaceae which express a series of HCH-converting enzymes. We showed that LinB, a haloalkane dehalogenase from Sphingobium indicum B90A, also transforms various HBCDs besides HCHs.
View Article and Find Full Text PDF