Publications by authors named "Simon Wigfield"

Background: Humans produce heat through non-shivering thermogenesis, a metabolic process that occurs in inducible beige adipocytes expressing uncoupling protein 1 (UCP1). UCP1 dissipates the proton gradient of the mitochondrial inner membrane and converts that energy into heat. It is unclear whether cancer cells can exhibit autonomous thermogenesis.

View Article and Find Full Text PDF

Background: Epidemiological studies suggest that metformin may reduce the incidence of cancer in patients with diabetes and multiple late phase clinical trials assessing the potential of repurposing this drug are underway. Transcriptomic profiling of tumour samples is an excellent tool to understand drug bioactivity, identify candidate biomarkers and assess for mechanisms of resistance to therapy.

Methods: Thirty-six patients with untreated primary breast cancer were recruited to a window study and transcriptomic profiling of tumour samples carried out before and after metformin treatment.

View Article and Find Full Text PDF

The interplay between NOD2 and TLR2 following recognition of components of the bacterial cell wall peptidoglycan is well-established, however their role in redirecting metabolic pathways in myeloid cells to degrade pathogens and mount antigen presentation remains unclear. We show NOD2 and TLR2 mediate phosphorylation of the deubiquitinase ataxin-3 via RIPK2 and TBK1. In myeloid cells ataxin-3 associates with the mitochondrial cristae protein MIC60, and is required for oxidative phosphorylation.

View Article and Find Full Text PDF

Tumor hypoxia is associated with poor patient outcomes in estrogen receptor-α-positive (ERα) breast cancer. Hypoxia is known to affect tumor growth by reprogramming metabolism and regulating amino acid (AA) uptake. Here, we show that the glutamine transporter, SNAT2, is the AA transporter most frequently induced by hypoxia in breast cancer, and is regulated by hypoxia both in vitro and in vivo in xenografts.

View Article and Find Full Text PDF

Late-phase clinical trials investigating metformin as a cancer therapy are underway. However, there remains controversy as to the mode of action of metformin in tumors at clinical doses. We conducted a clinical study integrating measurement of markers of systemic metabolism, dynamic FDG-PET-CT, transcriptomics, and metabolomics at paired time points to profile the bioactivity of metformin in primary breast cancer.

View Article and Find Full Text PDF

Objective: Defective mitochondrial function attributed to optic atrophy 1 (OPA1) mutations causes primarily optic atrophy and, less commonly, neurodegenerative syndromes. The pathomechanism by which OPA1 mutations trigger diffuse loss of neurons in some, but not all, patients is unknown. Here, we used a tractable induced pluripotent stem cell (iPSC)-based model to capture the biology of OPA1 haploinsufficiency in cases presenting with classic eye disease versus syndromic parkinsonism.

View Article and Find Full Text PDF

Aim: IL-2 is one of the first immunomodulating cytokines to be tested in the treatment of cancer patients. The effects of this agent in the treatment of solid tumors other than renal cancer and melanoma are poorly understood.

Materials & Methods: We have carried out a meta-analysis of randomized studies.

View Article and Find Full Text PDF

Background: Altered metabolism is a hallmark of cancer. However, the role of genomic changes in metabolic genes driving the tumour metabolic shift remains to be elucidated. Here, we have investigated the genomic and transcriptomic changes underlying this shift across ten different cancer types.

View Article and Find Full Text PDF

Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result.

View Article and Find Full Text PDF

The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone.

View Article and Find Full Text PDF

Carbonic anhydrase IX (CAIX) is strongly induced by hypoxia and its overexpression is associated with poor therapeutic outcome in cancer. Here, we report that hypoxia promotes tumour heterogeneity through the epigenetic regulation of CAIX. Based on hypoxic CAIX expression we identify and characterize two distinct populations of tumour cells, one that has inducible expression of CAIX and one that does not.

View Article and Find Full Text PDF

An in vivo model of antiangiogenic therapy allowed us to identify genes upregulated by bevacizumab treatment, including Fatty Acid Binding Protein 3 (FABP3) and FABP7, both of which are involved in fatty acid uptake. In vitro, both were induced by hypoxia in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. There was a significant lipid droplet (LD) accumulation in hypoxia that was time and O2 concentration dependent.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that using a drug called bevacizumab helps patients with a type of brain cancer called glioblastoma respond better to chemotherapy and live longer without the cancer getting worse.
  • However, tumors often adapt and resist the treatment, so researchers are exploring other drugs that can work well with bevacizumab to stop this resistance.
  • In their study, they discovered that combining bevacizumab with another drug called dichloroacetate (DCA) worked much better together than using either one alone, suggesting this combo could be a strong fight against brain cancer.
View Article and Find Full Text PDF
Article Synopsis
  • Bevacizumab is a drug that helps stop the growth of blood vessels in tumors, but sometimes tumors find a way to resist it, especially when they become low in oxygen.
  • Researchers found that a gene called CAIX, which gets turned on when there's not enough oxygen, is linked to how poorly people with certain cancers do when treated with bevacizumab.
  • By lowering the CAIX gene in lab-grown cancer cells, they found that it made the tumors grow slower and helped the bevacizumab work better, suggesting targeting CAIX could be a useful addition to cancer treatments.
View Article and Find Full Text PDF

Background And Purpose: Carbonic anhydrase (CA) IX expression is increased upon hypoxia and has been proposed as a therapeutic target since it has been associated with poor prognosis, tumor progression and pH regulation. The aim of this study was to evaluate the antitumor activity of a high CAIX-affinity indanesulfonamide (11c) combined with irradiation, compared with the general CA inhibitor acetazolamide (AZA).

Material And Methods: HT-29 carcinoma cells with or without (genetic knockdown, KD) CAIX expression were incubated with 11c/AZA under different oxygen levels and proliferation, apoptosis and radiosensitivity were evaluated.

View Article and Find Full Text PDF

BNIP3 is a hypoxia-inducible BH3-only member of the Bcl-2 family of proteins that regulate apoptosis and autophagy. However the role of BNIP3 in the hypoxia response has proved difficult to define and remains controversial. In this study we show that in cancer cells, knockdown or forced expression of BNIP3 fails to modulate cell survival under hypoxic or normoxic conditions.

View Article and Find Full Text PDF

CA9 is a membrane-tethered, carbonic anhydrase (CA) enzyme, expressed mainly at the external surface of cells, that catalyzes reversible CO(2) hydration. Expression is greatly enhanced in many tumors, particularly in aggressive carcinomas. The functional role of CA9 in tumors is not well established.

View Article and Find Full Text PDF

Purpose: Hypoxia-inducible factor-alpha (HIF-alpha) is a transcription factor that regulates the response to hypoxia. HIF-alpha protein is found at high levels in many cancers, and the redox protein thioredoxin-1 (Trx-1) increases both aerobic and hypoxia-induced HIF-alpha. Therefore, Trx-1 and HIF-alpha are attractive molecular targets for novel cancer therapeutics.

View Article and Find Full Text PDF

The purpose of this study is to investigate the role of carbonic anhydrase IX (CAIX) expression in predicting the response to epirubicin and disease-free survival (DFS) in breast cancer patients enrolled in a single institution trial of primary anthracycline and tamoxifen therapy. CAIX expression was assessed in 183 patients with T2-4 N0-1 breast cancer enrolled in a randomized trial comparing four cycles of single agent epirubicin versus epirubicin+tamoxifen as primary systemic treatment. All patients received postoperatively four cycles of the four weekly i.

View Article and Find Full Text PDF

Purpose: To investigate the relationship of hypoxia-inducible factor-1alpha (HIF-1alpha) tumor expression in predicting the response to epirubicin and disease-free survival (DFS) in patients with breast cancer enrolled in a single institution trial of primary anthracycline and tamoxifen therapy.

Experimental Design: The expression of HIF-1alpha was assessed by immunohistochemistry in 187 patients with T(2-4) N(0-1) breast cancer enrolled in a randomized trial comparing four cycles of single agent epirubicin versus epirubicin + tamoxifen as primary systemic treatment. All patients postoperatively received four cycles of the four weekly i.

View Article and Find Full Text PDF

Insulin-like growth factors elicit many responses through activation of phosphoinositide 3-OH kinase (PI3K). The tuberous sclerosis complex (TSC1-2) suppresses cell growth by negatively regulating a protein kinase, p70S6K (S6K1), which generally requires PI3K signals for its activation. Here, we show that TSC1-2 is required for insulin signaling to PI3K.

View Article and Find Full Text PDF