Publications by authors named "Simon Wanninger"

By avoiding ensemble averaging, single-molecule methods provide novel means of extracting mechanistic insights into function of material and molecules at the nanoscale. However, one of the big limitations is the vast amount of data required for analyzing and extracting the desired information, which is time-consuming and user dependent. Here, we introduce Deep-LASI, a software suite for the manual and automatic analysis of single-molecule traces, interactions, and the underlying kinetics.

View Article and Find Full Text PDF

Single-molecule experiments have changed the way we explore the physical world, yet data analysis remains time-consuming and prone to human bias. Here, we introduce Deep-LASI (Deep-Learning Assisted Single-molecule Imaging analysis), a software suite powered by deep neural networks to rapidly analyze single-, two- and three-color single-molecule data, especially from single-molecule Förster Resonance Energy Transfer (smFRET) experiments. Deep-LASI automatically sorts recorded traces, determines FRET correction factors and classifies the state transitions of dynamic traces all in ~20-100 ms per trajectory.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the complex behavior of G-protein-coupled receptors (GPCRs) and how their shape changes impact their function in the body.
  • Researchers used single-molecule Förster Resonance Energy Transfer (smFRET) to observe the conformational dynamics of the human A adenosine receptor (AAR) while embedded in lipid nanodiscs, providing a more natural environment for the receptors.
  • Their findings reveal that AAR can switch between active-like and inactive-like states slowly, and when activated by a ligand, it shows faster dynamics, suggesting this method could be useful for developing new drugs.
View Article and Find Full Text PDF

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking.

View Article and Find Full Text PDF

This Tutorial Review presents an overview on the synthesis, characterization and applications of metal complexes containing curcumin (=1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) and its derivatives as ligands. Innovative synthetic strategies leading to soluble and crystallizable metal curcumin complexes are outlined in detail. Special emphasis is placed on the highly promising and exciting medicinal applications of metal curcumin complexes, with the three most important areas being anticancer activity and selective cytotoxicity, anti-Alzheimer's disease activity, and antioxidative/neuroprotective effects.

View Article and Find Full Text PDF