PLoS Negl Trop Dis
October 2024
Background: Variation in snake venoms is well documented, both between and within species, with intraspecific venom variation often correlated with geographically distinct populations. The puff adder, Bitis arietans, is widely distributed across sub-Saharan Africa and into the Arabian Peninsula where it is considered a leading cause of the ~310,000 annual snakebites across the region, with its venom capable of causing substantial morbidity and mortality. Despite its medical importance and wide geographic distribution, there is little known about venom variation between different B.
View Article and Find Full Text PDFParasitic nematodes have an intimate, chronic and lifelong exposure to vertebrate tissues. Here we mined 41 published parasitic nematode transcriptomes from vertebrate hosts and identified 91 RNA viruses across 13 virus orders from 24 families in ~70% (28 out of 41) of parasitic nematode species, which include only 5 previously reported viruses. We observe widespread distribution of virus-nematode associations across multiple continents, suggesting an ancestral acquisition event and host-virus co-evolution.
View Article and Find Full Text PDFThe human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane.
View Article and Find Full Text PDFLymphatic filariasis is a vector-borne neglected tropical disease prioritized for global elimination. The filarial nematodes that cause the disease host a symbiotic bacterium, Wolbachia, which has been targeted using antibiotics, leading to cessation of parasite embryogenesis, waning of circulating larvae (microfilariae [mf]), and gradual cure of adult infection. One of the benefits of the anti-Wolbachia mode of action is that it avoids the rapid killing of mf, which can drive inflammatory adverse events.
View Article and Find Full Text PDFWolbachia, a widespread bacterium that can reduce pathogen transmission in mosquitoes, has recently been reported to be present in Anopheles (An.) species. In wild populations of the An.
View Article and Find Full Text PDFTsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species.
View Article and Find Full Text PDFSkin snip evaluation for onchocerciasis has insufficient sensitivity when skin microfilarial (mf) densities are low, such as following ivermectin treatment. Mf density is suitable for assessing microfilaricidal efficacy but only serves as an indirect indicator of macrofilaricidal activity. We assessed circulating nucleic acids from Onchocerca volvulus as an alternative to skin snips.
View Article and Find Full Text PDFThe asp viper Vipera aspis aspis is a venomous snake found in France, and despite its medical importance, the complete toxin repertoire produced is unknown. Here, we used a venomics approach to decipher the composition of its venom. Transcriptomic analysis revealed 80 venom-annotated sequences grouped into 16 gene families.
View Article and Find Full Text PDFIR-TEx is an application written in Shiny (an R package) that allows exploration of the expression of (as well as assigning functions to) transcripts whose expression is associated with insecticide resistance phenotypes in Anopheles gambiae mosquitoes. The application can be used online or downloaded and used locally by anyone. The local application can be modified to add new insecticide resistance datasets generated from multiple -omics platforms.
View Article and Find Full Text PDFSnakebite is a neglected tropical disease that causes 138,000 deaths each year. Neurotoxic snake venoms contain small neurotoxins, including three-finger toxins (3FTxs), which can cause rapid paralysis in snakebite victims by blocking postsynaptic transmission nicotinic acetylcholine receptors (nAChRs). These toxins are typically weakly immunogenic and thus are often not effectively targeted by current polyclonal antivenom therapies.
View Article and Find Full Text PDFWe report on the variable venom composition of a population of the Caucasus viper (Vipera kaznakovi) in Northeastern Turkey. We applied a combination of venom gland transcriptomics, de-complexing bottom-up and top-down venomics. In contrast to sole bottom-up venomics approaches and gel or chromatography based venom comparison, our combined approach enables a faster and more detailed comparison of venom proteomes from multiple individuals.
View Article and Find Full Text PDFWhile envenoming by the southern African shield-nosed or coral snakes (genus Aspidelaps) has caused fatalities, bites are uncommon. Consequently, this venom is not used in the mixture of snake venoms used to immunise horses for the manufacture of regional SAIMR (South African Institute for Medical Research) polyvalent antivenom. Aspidelaps species are even excluded from the manufacturer's list of venomous snakes that can be treated by this highly effective product.
View Article and Find Full Text PDFBackground: To understand more about changes to the molecular components that occur when host endothelium interacts with Plasmodium falciparum-infected erythrocytes, a combined technique of protein separation (1D Blue-Native electrophoresis) and mass spectrometry of infected erythrocytes with endothelial cells (EC) in a co-culture system has been used.
Methods: Native proteins were extracted from co-cultures and identified by mass spectrometry. Proteomic data from different parasite strains, either adhesion proficient (to endothelial cells) or non-adherent, were analysed in parallel to reveal protein associations linked to cytoadherence.
Background: Malaria control in Africa is dependent upon the use insecticides but intensive use of a limited number of chemicals has led to resistance in mosquito populations. Increased production of enzymes that detoxify insecticides is one of the most potent resistance mechanisms. Several metabolic enzymes have been implicated in insecticide resistance but the processes controlling their expression have remained largely elusive.
View Article and Find Full Text PDFUnlabelled: Mambas (genus Dendroaspis) are among the most feared of the medically important elapid snakes found in sub-Saharan Africa, but many facets of their biology, including the diversity of venom composition, remain relatively understudied. Here, we present a reconstruction of mamba phylogeny, alongside genus-wide venom gland transcriptomic and high-resolution top-down venomic analyses. Whereas the green mambas, D.
View Article and Find Full Text PDFVenom systems have evolved on multiple occasions across the animal kingdom, and they can act as key adaptations to protect animals from predators [1]. Consequently, venomous animals serve as models for a rich source of mimicry types, as non-venomous species benefit from reductions in predation risk by mimicking the coloration, body shape, and/or movement of toxic counterparts [2-5]. The frequent evolution of such deceitful imitations provides notable examples of phenotypic convergence and are often invoked as classic exemplars of evolution by natural selection.
View Article and Find Full Text PDFBackground: Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored.
View Article and Find Full Text PDFBackground: Snake venoms contain many proteinaceous toxins that can cause severe pathology and mortality in snakebite victims. Interestingly, mRNA encoding such toxins can be recovered directly from venom, although yields are low and quality is unknown. It also remains unclear whether such RNA contains information about toxin isoforms and whether it is representative of mRNA recovered from conventional sources, such as the venom gland.
View Article and Find Full Text PDFCnidarian venom research has lagged behind other toxinological fields due to technical difficulties in recovery of the complex venom from the microscopic nematocysts. Here we report a newly developed rapid, repeatable and cost effective technique of venom preparation, using ethanol to induce nematocyst discharge and to recover venom contents in one step. Our model species was the Australian box jellyfish (Chironex fleckeri), which has a notable impact on public health.
View Article and Find Full Text PDFBMC Bioinformatics
December 2014
Background: Within many research areas, such as transcriptomics, the millions of short DNA fragments (reads) produced by current sequencing platforms need to be assembled into transcript sequences before they can be utilized. Despite recent advances in assembly software, creating such transcripts from read data harboring isoform variation remains challenging. This is because current approaches fail to identify all variants present or they create chimeric transcripts within which relationships between co-evolving sites and other evolutionary factors are disrupted.
View Article and Find Full Text PDFBackground: The elevated expression of enzymes with insecticide metabolism activity can lead to high levels of insecticide resistance in the malaria vector, Anopheles gambiae. In this study, adult female mosquitoes from an insecticide susceptible and resistant strain were dissected into four different body parts. RNA from each of these samples was used in microarray analysis to determine the enrichment patterns of the key detoxification gene families within the mosquito and to identify additional candidate insecticide resistance genes that may have been overlooked in previous experiments on whole organisms.
View Article and Find Full Text PDFVariation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation.
View Article and Find Full Text PDFVenom is a critical evolutionary innovation enabling venomous snakes to become successful limbless predators; it is therefore vital that venomous snakes possess a highly efficient venom production and delivery system to maintain their predatory arsenal. Here, we exploit the unusual stability of messenger RNA in venom to conduct, for the first time, quantitative PCR to characterise the dynamics of gene expression of newly synthesised venom proteins following venom depletion. Quantitative PCR directly from venom enables real-time dynamic studies of gene expression in the same animals because it circumvents the conventional requirement to sacrifice snakes to extract mRNA from dissected venom glands.
View Article and Find Full Text PDFBackground: Serine proteases are major components of viper venom and target various stages of the blood coagulation system in victims and prey. A better understanding of the diversity of serine proteases and other enzymes present in snake venom will help to understand how the complexity of snake venom has evolved and will aid the development of novel therapeutics for treating snake bites.
Methodology And Principal Findings: Four serine protease-encoding genes from the venom gland transcriptome of Bitis gabonica rhinoceros were amplified and sequenced.