Publications by authors named "Simon Veth"

2',3'-Cyclic GMP-AMP (cGAMP) is a cyclic dinucleotide second messenger in which guanosine and adenosine are connected by one 3'-5' and one 2'-5' phosphodiester linkage. It is formed in the cytosol upon detection of pathogenic DNA by the enzyme guanosine-monophosphate-adenosine monophosphate synthase (cGAS). cGAMP subsequently binds to the adaptor protein stimulator of interferon genes (STING) to elicit an innate immune response leading to the production of type I interferons and cytokines.

View Article and Find Full Text PDF

The cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) axis is the predominant DNA sensing system in cells of the innate immune system. However, human T cells also express high levels of STING, while its role and physiological trigger remain largely unknown. Here, we show that the cGAS-STING pathway is indeed functional in human primary T cells.

View Article and Find Full Text PDF

2',3'-cGAMP is a cyclic A- and G-containing dinucleotide second messenger, which is formed upon cellular recognition of foreign cytosolic DNA as part of the innate immune response. The molecule binds to the adaptor protein STING, which induces an immune response characterized by the production of type I interferons and cytokines. The development of STING-binding molecules with both agonistic as well as antagonistic properties is currently of tremendous interest to induce or enhance antitumor or antiviral immunity on the one hand, or to treat autoimmune diseases on the other hand.

View Article and Find Full Text PDF

The cGAS-STING pathway is known for its role in sensing cytosolic DNA introduced by a viral infection, bacterial invasion or tumorigenesis. Free DNA is recognized by the cyclic GMP-AMP synthase (cGAS) catalyzing the production of 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (2',3'-cGAMP) in mammals. This cyclic dinucleotide acts as a second messenger, activating the stimulator of interferon genes (STING) that finally triggers the transcription of interferon genes and inflammatory cytokines.

View Article and Find Full Text PDF

2'3'-cGAMP is an uncanonical cyclic dinucleotide where one A and one G base are connected via a 3'-5' and a unique 2'-5' linkage. The molecule is produced by the cyclase cGAS in response to cytosolic DNA binding. cGAMP activates STING and hence one of the most powerful pathways of innate immunity.

View Article and Find Full Text PDF

Diamine-mediated α-deprotonation of O-alkyl carbamates or benzoates with alkyllithium reagents, trapping of the carbanion with organoboron compounds, and 1,2-metalate rearrangement of the resulting boronate complex are the primary steps by which organoboron compounds can be stereoselectively homologated. Although the final step can be easily monitored by B NMR spectroscopy, the first two steps, which are typically carried out at cryogenic temperatures, are less well understood owing to the requirement for specialized analytical techniques. Investigation of these steps by in situ IR spectroscopy has provided invaluable data for optimizing the homologation reactions of organoboron compounds.

View Article and Find Full Text PDF