Background And Aims: The centropogonid clade (Lobelioideae: Campanulaceae) is an Andean-centred rapid radiation characterized by repeated convergent evolution of morphological traits, including fruit type and pollination syndromes. While previous studies have resolved relationships of lineages with fleshy fruits into subclades, relationships among capsular species remain unresolved. This lack of resolution has impeded reclassification of non-monophyletic genera, whose current taxonomy relies heavily on traits that have undergone convergent evolution.
View Article and Find Full Text PDFTargeted sequence capture is a promising approach for large-scale phylogenomics. However, rapid evolutionary radiations pose significant challenges for phylogenetic inference (e.g.
View Article and Find Full Text PDFThe past decade has seen a major breakthrough in our ability to easily and inexpensively sequence genome-scale data from diverse lineages. The development of high-throughput sequencing and long-read technologies has ushered in the era of phylogenomics, where hundreds to thousands of nuclear genes and whole organellar genomes are routinely used to reconstruct evolutionary relationships. As a result, understanding which options are best suited for a particular set of questions can be difficult, especially for those just starting in the field.
View Article and Find Full Text PDFUsing multiple, independent approaches to molecular species delimitation is advocated to accommodate limitations and assumptions of a single approach. Incongruence in delimitation schemes is a potential by-product of employing multiple methods on the same data, and little attention has been paid to its reconciliation. Instead, a particular scheme is prioritized, and/or molecular delimitations are coupled with additional, independent lines of evidence that mitigate incongruence.
View Article and Find Full Text PDFPremise Of The Study: Grapes are one of the most economically important berry crops worldwide, with the vast majority of production derived from the domesticated Eurasian species Vitis vinifera. Expansion of production into new areas, development of new cultivars, and concerns about adapting grapevines for changing climates necessitate the use of wild grapevine species in breeding programs. Diversity within Vitis has long been a topic of study; however, questions remain regarding relationships between species.
View Article and Find Full Text PDFPremise Of The Study: Chloroplast primers were developed from genomic data for the taxonomically challenging genus . We further tested the broader utility of these primers across Orobanchaceae, identifying a core set of chloroplast primers amplifying across the clade.
Methods And Results: Using a combination of three low-coverage genomes and sequence data from 12 plastomes, 76 primer combinations were specifically designed and tested for .
The field of molecular systematics has benefited greatly with the advent of high-throughput sequencing (HTS), making large genomic datasets commonplace. However, a large number of targeted Sanger sequences produced by many studies over the last two decades are publicly available and should not be overlooked. In this study, we elucidate the phylogenetic relationships of the plant genus Burmeistera (Campanulaceae: Lobelioideae), while investigating how to best combine targeted Sanger loci with HTS data.
View Article and Find Full Text PDFAdvances in high-throughput sequencing (HTS) have allowed researchers to obtain large amounts of biological sequence information at speeds and costs unimaginable only a decade ago. Phylogenetics, and the study of evolution in general, is quickly migrating towards using HTS to generate larger and more complex molecular datasets. In this paper, we present a method that utilizes microfluidic PCR and HTS to generate large amounts of sequence data suitable for phylogenetic analyses.
View Article and Find Full Text PDFPremise Of The Study: Clade-specific bursts in diversification are often associated with the evolution of key innovations. However, in groups with no obvious morphological innovations, observed upticks in diversification rates have also been attributed to the colonization of a new geographic environment. In this study, we explore the systematics, diversification dynamics, and historical biogeography of the plant clade Rhinantheae in the Orobanchaceae, with a special focus on the Andean clade of the genus Bartsia.
View Article and Find Full Text PDFBackground: Our aim is to understand the evolution of species-rich plant groups that shifted from tropical into cold/temperate biomes. It is well known that climate affects evolutionary processes, such as how fast species diversify, species range shifts, and species distributions. Many plant lineages may have gone extinct in the Northern Hemisphere due to Late Eocene climate cooling, while some tropical lineages may have adapted to temperate conditions and radiated; the hyper-diverse and geographically widespread genus Hypericum is one of these.
View Article and Find Full Text PDFPremise Of The Study: We present an alternative approach for molecular systematic studies that combines long PCR and next-generation sequencing. Our approach can be used to generate templates from any DNA source for next-generation sequencing. Here we test our approach by amplifying complete chloroplast genomes, and we present a set of 58 potentially universal primers for angiosperms to do so.
View Article and Find Full Text PDF