Ustilago maydis is a biotrophic pathogen causing smut disease in maize. It secretes a cocktail of effector proteins, which target different host proteins during its biotrophic stages in the host plant. One such class of proteins we identified previously is TOPLESS (TPL) and TOPLESS-RELATED (TPR) transcriptional corepressors.
View Article and Find Full Text PDFis a biotrophic phytopathogenic fungus that causes corn smut disease. As a well-established model system, is genetically fully accessible with large omics datasets available and subject to various biological questions ranging from DNA-repair, RNA-transport, and protein secretion to disease biology. For many genetic approaches, tight control of transgene regulation is important.
View Article and Find Full Text PDFPlant biotrophic pathogens employ secreted molecules, called effectors, to suppress the host immune system and redirect the host's metabolism and development in their favour. Putative effectors of the gall-inducing maize pathogenic fungus Ustilago maydis were analysed for their ability to induce auxin signalling in plants. Using genetic, biochemical, cell-biological, and bioinformatic approaches we functionally elucidate a set of five, genetically linked effectors, called Topless (TPL) interacting protein (Tips) effectors that induce auxin signalling.
View Article and Find Full Text PDFUstilago maydis is the causal agent of maize smut disease. During the colonization process, the fungus secretes effector proteins that suppress immune responses and redirect the host metabolism in favor of the pathogen. As effectors play a critical role during plant colonization, their identification and functional characterization are essential to understanding biotrophy and disease.
View Article and Find Full Text PDFDuring infection pathogens secrete small molecules, termed effectors, to manipulate and control the interaction with their specific hosts. Both the pathogen and the plant are under high selective pressure to rapidly adapt and co-evolve in what is usually referred to as molecular arms race. Components of the host's immune system form a network that processes information about molecules with a foreign origin and damage-associated signals, integrating them with developmental and abiotic cues to adapt the plant's responses.
View Article and Find Full Text PDFCurr Protoc Plant Biol
September 2019
Insertional mutant libraries of microorganisms can be applied in negative depletion screens to decipher gene functions. Because of underrepresentation in colonized tissue, one major bottleneck is analysis of species that colonize hosts. To overcome this, we developed insertion pool sequencing (iPool-Seq).
View Article and Find Full Text PDFTranslation termination requires eRF1 and eRF3 for polypeptide- and tRNA-release on stop codons. Additionally, Dbp5/DDX19 and Rli1/ABCE1 are required; however, their function in this process is currently unknown. Using a combination of in vivo and in vitro experiments, we show that they regulate a stepwise assembly of the termination complex.
View Article and Find Full Text PDFThe biotrophic pathogen Ustilago maydis, the causative agent of corn smut disease, infects one of the most important crops worldwide - Zea mays. To successfully colonize its host, U. maydis secretes proteins, known as effectors, that suppress plant defense responses and facilitate the establishment of biotrophy.
View Article and Find Full Text PDFLarge-scale insertional mutagenesis screens can be powerful genome-wide tools if they are streamlined with efficient downstream analysis, which is a serious bottleneck in complex biological systems. A major impediment to the success of next-generation sequencing (NGS)-based screens for virulence factors is that the genetic material of pathogens is often underrepresented within the eukaryotic host, making detection extremely challenging. We therefore established insertion Pool-Sequencing (iPool-Seq) on maize infected with the biotrophic fungus U.
View Article and Find Full Text PDFDue to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: and sp.
View Article and Find Full Text PDFMol Plant Microbe Interact
September 2012
The smut fungus Sporisorium reilianum occurs in two varieties (S. reilianum f. sp.
View Article and Find Full Text PDF