Secondary hydroxyl groups of hydroxypropyl cellulose (HPC) are transformed into reactive carbonyl groups selectively via TEMPO-mediated oxidation in the presence of sodium hypochlorite. By using this oxidation protocol, we introduced carbonyl functions in HPC under mild conditions, with a controlled degree of oxidation (DOx) up to 2.5 and a low degradation of the polysaccharide.
View Article and Find Full Text PDFUsing isocyanate-functionalized Kraft lignin as a reactive macromonomer for the preparation of polyurethane foams by a prepolymer technique is a well-known strategy to incorporate the biomacromolecule into a higher value polymer material. However, as of today the mechanical properties of the resulting materials are still insufficient for a number of possible applications. One reason for this limitation is that the reaction pathway and the morphological arrangement of such foams is of uttermost complexity and depends on a large number of influencing material-intrinsic factors.
View Article and Find Full Text PDFChemistry, geometric shape and swelling behavior are the key parameters that determine any successful use of man-made polymeric networks (gels). While understanding of the swelling behavior of both water-swellable hydrogels and organogels that swell in organic solvents can be considered well-advanced with respect to fossil fuel-based polymer networks, the understanding, in particular, of wood-derived polymers in such a network architecture is still lacking. In this work, we focus on organogels derived from hydroxypropyl cellulose (HPC) ester.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
We introduce the design of Janus-type paper sheets where one side of the paper exhibits superhydrophobic properties, whereas the other side of the sheet remains hydrophilic and therefore can take up aqueous solutions by capillary wicking. Such papers are being prepared by chemically immobilizing a thin hybrid coating on paper sheets that consists of cross-linked poly(dimethylsiloxane) (PDMS) and inorganic particles of various sizes ranging from nanometers to several tens of micrometers. Both commercially available Whatman No.
View Article and Find Full Text PDFDue to its unique material properties, paper offers many practical advantages as a viable platform for sensing devices. In view of paper-based microfluidic biosensing applications, the covalent immobilization of enzymes with preserved functional activity is highly desirable and ultimately challenging. In the present manuscript, we report an efficient approach to achieving the covalent attachment of certain enzymes on paper fibers via a surface-bound network of hydrophilic polymers bearing protein-modifiable sites.
View Article and Find Full Text PDFOxidative coupling using molybdenum(V) reagents provides fast access to highly functionalized 9-monosubstituted fluorenes. This synthetic approach is highly modular, is high yielding, and tolerates a variety of labile moieties, e.g.
View Article and Find Full Text PDFThe unique oxidizing power of molybdenum pentachloride provides an easy to perform, versatile, and high yielding method to construct carbazoles and the corresponding dibenzo analogues of thiophene, furan, and selenophene. The coupling reaction tolerates a variety of functional groups. The synthesis is highly modular.
View Article and Find Full Text PDFMolybdenum pentachloride combines a strong Lewis acid character with an unusually high oxidation potential creating a powerful reagent for oxidative transformations. Since the oxidative coupling reaction of aryls is induced at an extraordinarily high reaction rate, a variety of labile groups, e.g.
View Article and Find Full Text PDFThe strong oxidative power of molybdenum pentachloride gives rise to an efficient oxidative C-C bond formation of benzil derivatives to the corresponding 9,10-phenanthrenequinones. A highly complementary method to previous approaches was developed. The required derivatives are accessible in a modular fashion and in excellent yields.
View Article and Find Full Text PDFTwo series of selectively deuterated cryptates with the lanthanoids Yb and Nd have been synthesized, and the luminescence lifetimes for the corresponding near-IR emission bands have been measured. Global fitting of these lifetime data combined with structural analysis allows for the accurate quantification of the contributions of individual C-H oscillators groups in the ligand to the nonradiative deactivation rates of the emissive lanthanoid states.
View Article and Find Full Text PDF