Publications by authors named "Simon Thorogood"

The demand for liver transplantation far outstrips the supply of deceased donor organs, and so, listing and allocation decisions aim to maximize utility. Most existing methods for predicting transplant outcomes use basic methods, such as regression modeling, but newer artificial intelligence (AI) techniques have the potential to improve predictive accuracy. The aim was to perform a systematic review of studies predicting graft outcomes following deceased donor liver transplantation using AI techniques and to compare these findings to linear regression and standard predictive modeling: donor risk index (DRI), Model for End-Stage Liver Disease (MELD), and Survival Outcome Following Liver Transplantation (SOFT).

View Article and Find Full Text PDF