We reformulate the analysis of singularities of Feynman integrals in a way that can be practically applied to perturbative computations in the standard model in dimensional regularization. After highlighting issues in the textbook treatment of Landau singularities, we develop an algorithm for classifying and computing them using techniques from computational algebraic geometry. We introduce an algebraic variety called the principal Landau determinant, which captures the singularities even in the presence of massless particles or UV/IR divergences.
View Article and Find Full Text PDF