Van der Waals chalcogenides and chalcohalides have the potential to become the next thin film PV breakthrough, owing to the earth-abundancy and non-toxicity of their components, and their stability, high absorption coefficient and quasi-1D structure, which leads to enhanced electrical anisotropic properties when the material is oriented in a specific crystalline direction. However, quasi-1D semiconductors beyond Sb(S,Se), such as SbSeX chalcohalides, have been scarcely investigated for energy generation applications, and rarely synthesised by physical vapor deposition methodologies, despite holding the promise of widening the bandgap range (opening the door to tandem or semi-transparent devices), and showing enticing new properties such as ferroelectric behaviour and defect-tolerant nature. In this work, SbSeI and SbSeBr micro-columnar solar cells have been obtained for the first time by an innovative methodology based on the selective halogenation of SbSe thin films at pressure above 1 atm.
View Article and Find Full Text PDFThe thermoelectric properties of molecular junctions consisting of a metal Pt electrode contacting [60]fullerene derivatives covalently bound to a graphene electrode have been studied by using a conducting-probe atomic force microscope (c-AFM). The [60]fullerene derivatives are covalently linked to the graphene via two -connected phenyl rings, two -connected phenyl rings, or a single phenyl ring. We find that the magnitude of the Seebeck coefficient is up to nine times larger than that of Au-C-Pt molecular junctions.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDCs) have been proposed as light absorber materials for ultrathin solar cells. These materials are characterized by their strong light-matter interaction and the possibility to be assembled into devices at room temperature. Here, we model the optical absorptance of an ultrathin MoS absorber embedded in different designs of a 1D optical cavity.
View Article and Find Full Text PDFThe photophysics of a semiconducting polymer is manipulated through molecular self-assembly on an insulating surface. Adsorption of polythiophene (PT) monolayers on hexagonal boron nitride (hBN) leads to a structurally induced planarization and a rebalancing of and intrachain excitonic coupling. This conformational control results in a dominant 0-0 photoluminescence peak and a reduced Huang-Rhys factor, characteristic of J-type aggregates, and optical properties which are significantly different to both PT thin films and single polymer strands.
View Article and Find Full Text PDFWe show that ordered monolayers of organic molecules stabilized by hydrogen bonding on the surface of exfoliated few-layer hexagonal boron nitride (hBN) flakes may be incorporated into van der Waals heterostructures with integral few-layer graphene contacts forming a molecular/two-dimensional hybrid tunneling diode. Electrons can tunnel through the hBN/molecular barrier under an applied voltage , and we observe molecular electroluminescence from an excited singlet state with an emitted photon energy > , indicating upconversion by energies up to ∼1 eV. We show that tunneling electrons excite embedded molecules into singlet states in a two-step process via an intermediate triplet state through inelastic scattering and also observe direct emission from the triplet state.
View Article and Find Full Text PDFThe fluorescence of a two-dimensional supramolecular network of 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin (TCPP) adsorbed on hexagonal boron nitride (hBN) is red-shifted due to, primarily, adsorbate-substrate van der Waals interactions. TCPP is deposited from solution on hBN and forms faceted islands with typical dimensions of 100 nm and either square or hexagonal symmetry. The molecular arrangement is stabilized by in-plane hydrogen bonding as determined by a combination of molecular-resolution atomic force microscopy performed under ambient conditions and density functional theory; a similar structure is observed on MoS2 and graphite.
View Article and Find Full Text PDFHigh broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures is achieved by exploiting the broad-band transparency of graphene, the direct bandgap of InSe, and the favorable band line up of InSe with graphene. The photoresponsivity exceeds that for other van der Waals heterostructures and the spectral response extends from the near-infrared to the visible spectrum.
View Article and Find Full Text PDFThe adsorption of the alkane tetratetracontane (TTC, C44H90) on graphene induces the formation of a curved surface stabilized by a gain in adsorption energy. This effect arises from a curvature-dependent variation of a moiré pattern due to the mismatch of the carbon-carbon separation in the adsorbed molecule and the period of graphene. The effect is observed when graphene is transferred onto a deformable substrate, which in our case is the interface between water layers adsorbed on mica and an organic solvent, but is not observed on more rigid substrates such as boron nitride.
View Article and Find Full Text PDFA two-dimensional porous network formed from perylene tetracarboxylic diimide (PTCDI) and melamine may be deposited from solution on the surfaces of highly oriented pyrolytic graphite (HOPG), hexagonal boron nitride (hBN) and molybdenum disulphide (MoS2). Images acquired using high resolution atomic force microscopy (AFM) operating under ambient conditions have revealed that the network forms extended ordered monolayers (>1 μm(2)) on HOPG and hBN whereas on MoS2 much smaller islands are observed.
View Article and Find Full Text PDFStrong quantization effects and tuneable near-infrared photoluminescence emission are reported in mechanically exfoliated crystals of γ-rhombohedral semiconducting InSe. The optical properties of InSe nanosheets differ qualitatively from those reported recently for exfoliated transition metal dichalcogenides and indicate a crossover from a direct to an indirect band gap semiconductor when the InSe flake thickness is reduced to a few nanometers.
View Article and Find Full Text PDFSolvent-induced aggregates of nanoring cyclic polymers may be transferred by electrospray deposition to a surface where they adsorb as three-dimensional columnar stacks. The observed stack height varies from single rings to four stacked rings with a layer spacing of 0.32 ± 0.
View Article and Find Full Text PDF