Molecular magnetic materials based on 1,2-diamidobenzenes are well known and have been intensively studied both experimentally and computationally. They possess interesting magnetic properties as well as redox activity. In this work, we present the synthesis and investigation of potent synthons for constructing discrete metal-organic architectures featuring 1,2-diamidobenzene-coordinated metal centres.
View Article and Find Full Text PDFAir-stable dinuclear complexes [(bmsab)Ni(tmsab)Ni(bmsab)] and [(bmsab)Zn(tmsab)Zn(bmsab)] (bmsab = bis(methanesulfoneamido)benzene, tmsab = tetra(methanesulfonamido)benzene) were prepared via a synthetic route based on heteroleptic precursor complexes. The new complexes combine a distorted tetrahedral coordination environment with an open-shell bridging ligand. The Zn species was subjected to a detailed investigation of the (spectro-)electrochemical processes.
View Article and Find Full Text PDFCarbon nitride materials can be hosts for transition metal sites, but Mössbauer studies on iron complexes in carbon nitrides have always shown a mixture of environments and oxidation states. Here we describe the synthesis and characterization of a crystalline carbon nitride with stoichiometric iron sites that all have the same environment. The material (formula CNHFeLiCl, abbreviated PTI/FeCl) is derived from reacting poly(triazine imide)·LiCl (PTI/LiCl) with a low-melting FeCl/KCl flux, followed by anaerobic rinsing with methanol.
View Article and Find Full Text PDFTwo homoleptic Fe(II) complexes in different spin states bearing superbasic terpyridine derivatives as ligands are investigated to determine the relationship between spin state and electrochemical/spectroscopic behavior. Antiferromagnetic coupling between a ligand-centered radical and the high-spin metal center leads to an anodic shift of the first reduction potential and results in a species that shows mixed valency with a moderately intense intervalence-charge-transfer band. The differences afforded by the different spin states extend to the electrochemical reactivity of the complexes: while the low-spin species is a precatalyst for electrocatalytic CO reduction and leads to the preferential formation of CO with a Faradaic efficiency of 37%, the high-spin species only catalyzes proton reduction at a modest Faradaic efficiency of approximately 20%.
View Article and Find Full Text PDFDiamidobenzene ligands are a prominent class of redox-active ligands owing to their electron reservoir behaviour, as well as the possibility of tuning the steric and the electronic properties of such ligands through the substituents on the N-atoms of the ligands. In this contribution, we present Rh(iii) complexes with four differently substituted diamidobenzene ligands. By using a combination of crystallography, NMR spectroscopy, electrochemistry, UV-vis-NIR/EPR spectroelectrochemistry, and quantum chemical calculations we show that the substituents on the ligands have a profound influence on the bonding, donor, electrochemical and spectroscopic properties of the Rh complexes.
View Article and Find Full Text PDFThe fine-tuning of intermolecular or intramolecular non-covalent interactions (NCIs) and thus the precise synthesis of metal complexes in which the spin states can be controlled by NCIs remains challenging, even though several such complexes have been intensively studied. In this regard, we present mononuclear cobalt(II) and iron(II) complexes with "click"-derived tripodal ligands that contain fluorinated benzyl substituents in the secondary coordination sphere. The complexes were co-crystallized with different solvent molecules to decipher the effect of the crystallized solvents on NCIs, and on the spin state of the metal ion.
View Article and Find Full Text PDFUnusual and unexpected chemical transformations often provide access to completely new types of functional molecules. We report here the synthesis of a methylene-bridged bis-triazolium salt designed as a precursor for a new bis-mesoionic carbene (MIC) ligand. The direct metalation with silver oxide led to the isolation and crystallographic characterization of a cationic tetranuclear octacarbene-silver(i) complex.
View Article and Find Full Text PDFCorrection for 'Tethered CAAC-CAAC dimers: oxidation to persistent radical cations and bridging-unit dependent reactivity/stability of the dications' by Mithilesh Kumar Nayak et al., Chem. Commun.
View Article and Find Full Text PDFHerein, we report tethered cyclic(alkyl)(amino)carbene (CAAC) dimers in which two CAAC-motifs are connected by an ethylene-, trans-1,2-cyclohexylene- and propylene-spacer through their N-centres. The 1-electron oxidized radical cations are isolable, whereas a significant influence of the bridging unit on the chemical reactivity becomes apparent in and with the 2-electron oxidized products.
View Article and Find Full Text PDFRedox-active ligands, owing to their electron reservoir capability, are well suited for the generation of coordinatively unsaturated metal complexes. We present here iridium complexes with an unsymmetrically substituted o-phenylenediamine ligand. A coordinatively unsaturated, formally iridium(iii) complex with the fully reduced o-phenylenediamide (or o-diamidobenzene) ligand was isolated and structurally characterized.
View Article and Find Full Text PDFWe have studied the effect of -substitution on the course of the reaction of imidazolium triflate. The reaction of -heterocyclic carbene with -Bu-substituted pyrrolinium triflate afforded 2-(pyrrolidin-2-yl)-imidazolium triflate, . Treatment of with potassium bis(trimethylsilyl)amide (KHMDS) leads to either the dealkylation product or the deprotonation product, triazaalkene , depending on the -substitution at the imidazolium moiety.
View Article and Find Full Text PDFSyntheses of very electron-rich dialkylamino-substituted 2,2':6',2''-terpyridines (TPYs) were adapted to moderate scale preparation without tedious purification of intermediates. The key 4'-bromo-6,6''-dimethyl-2,2':6',2''-terpyridine-4,4''-diyl bisnonaflate is now available in gram quantities. Its nucleophilic aromatic substitution with dimethylamine provided mixtures of 4'-bromo-substituted 4,4''-bis(dimethylamino)-TPY and the tris(dimethylamino)-TPY.
View Article and Find Full Text PDFThe reaction of 1,1,3,3-tetraphenyl-1,3-disiloxandiol (LH2) with n-butyllithium and CrCl2 results in a mononuclear chromium(II) complex (1) that further reacts with O2 at low temperatures to yield a mononuclear chromium(III) superoxide complex [L2CrO2(THF)][Li2(THF)3] (2). The crystal structure revealed that the chromium superoxido entity is stabilized by the coordination to an adjacent lithium cation. Complex 2 thus contains an unprecedented heterobimetallic [Cr(III)(μ-O2)Li(+)] core; beyond this it is the first chromium superoxide for which a temperature-dependent magnetic characterization could be achieved, and the first structurally characterized representative with chromium in an exclusive O-donor environment.
View Article and Find Full Text PDF