Publications by authors named "Simon Sprenger"

SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation.

View Article and Find Full Text PDF

The endosomal sorting complexes required for transport (ESCRT) mediate evolutionarily conserved membrane remodeling processes. Here, we used budding yeast () to explore how the ESCRT machinery contributes to plasma membrane (PM) homeostasis. We found that in response to reduced membrane tension and inhibition of TOR complex 2 (TORC2), ESCRT-III/Vps4 assemblies form at the PM and help maintain membrane integrity.

View Article and Find Full Text PDF

Eukaryotic genomes are organized within the nucleus through interactions with inner nuclear membrane (INM) proteins. How chromatin tethering to the INM is controlled in interphase and how this process contributes to subsequent mitotic nuclear envelope (NE) remodeling remains unclear. We have probed these fundamental questions using the fission yeast Schizosaccharomyces japonicus, which breaks and reforms the NE during mitosis.

View Article and Find Full Text PDF

Cellular adaptation in response to nutrient limitation requires the induction of autophagy and lysosome biogenesis for the efficient recycling of macromolecules. Here, we discovered that starvation and TORC1 inactivation not only lead to the up-regulation of autophagy and vacuole proteins involved in recycling but also result in the down-regulation of many vacuole membrane proteins to supply amino acids as part of a vacuole remodeling process. Down-regulation of vacuole membrane proteins is initiated by ubiquitination, which is accomplished by the coordination of multiple E3 ubiquitin ligases, including Rsp5, the Dsc complex, and a newly characterized E3 ligase, Pib1.

View Article and Find Full Text PDF

The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3-45 s lifetimes, the ESCRT-III assemblies accumulated 75-200 Snf7 and 15-50 Vps24 molecules.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondq900mpobejbnk9cdorck2mi6ni64udk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once