Publications by authors named "Simon Sharpe"

Pathological calcification of elastin, a key connective tissue protein in the medial layers of blood vessels, starts with the binding of calcium ions. This Mini-Review focuses on understanding how calcium ions interact with elastin to initiate calcification at a molecular level, and emphasizes water's critical role in mediating this interaction. In the past decade, great strides have been made in understanding and modeling ion-specific hydration and its effects on biomolecule interactions.

View Article and Find Full Text PDF

Elastic fibers provide critical elasticity to the arteries, lungs, and other organs. Elastic fiber assembly is a process where soluble tropoelastin is coacervated into liquid droplets, cross-linked, and deposited onto and into microfibrils. While much progress has been made in understanding the biology of this process, questions remain regarding the timing of interactions during assembly.

View Article and Find Full Text PDF

Serum amyloid A (SAA) is a highly conserved acute-phase protein that plays roles in activating multiple pro-inflammatory pathways during the acute inflammatory response and is commonly used as a biomarker of inflammation. It has been linked to beneficial roles in tissue repair through improved clearance of lipids and cholesterol from sites of damage. In patients with chronic inflammatory diseases, elevated levels of SAA may contribute to increased severity of the underlying condition.

View Article and Find Full Text PDF

Mammalian hosts combat bacterial infections through the production of defensive cationic antimicrobial peptides (CAPs). These immune factors are capable of directly killing bacterial invaders; however, many pathogens have evolved resistance evasion mechanisms such as cell surface modification, CAP sequestration, degradation, or efflux. We have discovered that several pathogenic and commensal proteobacteria, including the urgent human threat , secrete a protein (lactoferrin-binding protein B, LbpB) that contains a low-complexity anionic domain capable of inhibiting the antimicrobial activity of host CAPs.

View Article and Find Full Text PDF

Regulatory ATPase variant A (RavA) is a MoxR AAA+ protein that functions together with a partner protein termed von Willebrand factor type A interacting with AAA+ ATPase (ViaA). RavA-ViaA are functionally associated with anaerobic respiration in Escherichia coli through interactions with the fumarate reductase (Frd) electron transport complex. Through this association, RavA and ViaA modulate the activity of the Frd complex and, hence, are proposed to have chaperone-like activity.

View Article and Find Full Text PDF

Numerous spider venom-derived gating modifier toxins exhibit conformational heterogeneity during purification by reversed-phase high-performance liquid chromatography (RP-HPLC). This conformational exchange is especially peculiar for peptides containing an inhibitor cystine knot motif, which confers excellent structural stability under conditions that are not conducive to disulfide shuffling. This phenomenon is often attributed to proline / isomerization but has also been observed in peptides that do not contain a proline residue.

View Article and Find Full Text PDF
Article Synopsis
  • Disulfide-rich peptide toxins, specifically targeting the sodium channel Na1.7, are explored for their potential in pain treatment by combining conotoxins and spider toxins into new bivalent inhibitors.
  • The researchers created heterodimeric toxins through specific ligation methods, testing various combinations to evaluate their effectiveness, especially focusing on the compound created by linking ProTx-II and SxIIIC which showed enhanced potency.
  • Findings indicated that the gating modifier toxins significantly influenced the potency of these bivalent peptides, and highlighted the balance of benefits and drawbacks in designing hybrid pharmacological agents for Na1.7 targeting.
View Article and Find Full Text PDF

Resilin is an elastic material found in insects with exceptional durability, resilience, and extensibility, making it a promising biomaterial for tissue engineering. The monomeric precursor, pro-resilin, undergoes thermo-responsive self-assembly through liquid-liquid phase separation (LLPS). Understanding the molecular details of this assembly process is critical to developing complex biomaterials.

View Article and Find Full Text PDF

The DNA repair scaffold SLX4 has multifaceted roles in genome stability, many of which depend on structure-selective endonucleases. SLX4 coordinates the cell cycle-regulated assembly of SLX1, MUS81-EME1, and XPF-ERCC1 into a tri-nuclease complex called SMX. Mechanistically, how the mitotic kinase CDK1 regulates the interaction between SLX4 and MUS81-EME1 remains unclear.

View Article and Find Full Text PDF

Background: With blood products being a limited and expensive resource within the healthcare system, there is an ever-increasing emphasis on judicial and appropriate use.

Aims: To evaluate whether implementing contemporary society recommendations on restrictive transfusion policies would reduce inappropriate use of red blood cell transfusions, by evaluating the effect of a staff educational campaign.

Methods: An audit of peri-partum red cell concentrate (RCC) transfusion practice within a tertiary obstetric unit was undertaken, covering a 1-year period (2015), examining data related to transfusion prescribing practices.

View Article and Find Full Text PDF

Elastic fiber assembly is a complex process that requires the coacervation and cross-linking of the protein building block tropoelastin. To date, the order, timing, and interplay of coacervation and crosslinking is not completely understood, despite a great number of advances into understanding the molecular structure and functions of the many proteins involved in elastic fiber assembly. With a simple model using elastin-like polypeptides and the natural chemical crosslinker genipin, we demonstrate the strong influence of the timing and kinetics of crosslinking reaction on the coacervation, crosslinking extent, and resulting morphology of elastin.

View Article and Find Full Text PDF

Elastin is a major polymeric protein of the extracellular matrix, providing critical properties of extensibility and elastic recoil. The rs2071307 genomic polymorphism, resulting in the substitution of a serine for a glycine residue in a VPG motif in tropoelastin, has an unusually high minor allele frequency in humans. A consequence of such allelic heterozygosity would be the presence of a heterogeneous elastin polymer in up to 50% of the population, a situation which appears to be unique to Homo sapiens.

View Article and Find Full Text PDF

Medial calcification has been associated with diabetes, chronic kidney disease, and genetic disorders like pseudoxanthoma elasticum. Recently, we showed that genetic reduction of arterial elastin content reduces the severity of medial calcification in matrix Gla protein (MGP)-deficient and Eln haploinsufficient Mgp-/-;Eln+/- mice. This study suggests that there might be a direct effect of elastin amount on medial calcification.

View Article and Find Full Text PDF

Deposition of calcium phosphate minerals on the elastin-rich medial layers of arteries can cause severe cardiovascular complications. There are no available treatments for medial calcification, and the mechanism of mineral formation on elastin layers is still unknown. We recently developed an in vitro model of medial calcification using cross-linked elastin-like polypeptide (ELP) membranes immersed in simulated body fluid (SBF).

View Article and Find Full Text PDF

The HIV-1 accessory protein Vpu mediates the downregulation of several host cell proteins, an activity that is critical for viral replication in vivo. As the first step in directing cell-surface proteins to internal cellular compartments, and in many cases degradation, Vpu binds a subset of its target proteins through their transmembrane domains. Each of the known targets of Vpu are synthesized in the ER, and must traverse the different membrane environments found along the secretory pathway, thus it is important to consider how membrane composition might influence the interactions between Vpu and its targets.

View Article and Find Full Text PDF

Elastin is the polymeric protein responsible for the physiologically important properties of extensibility and elastic recoil of cardiovascular, pulmonary and many other tissues. In spite of significant advances in the understanding how monomeric tropoelastin is assembled into the polymeric elastic matrix, details of this assembly process are still lacking. In particular it is not clear how the various architectures and more subtle elastic properties required by diverse elastic tissues can arise from the protein product of a single gene.

View Article and Find Full Text PDF

Calcium phosphate minerals deposit on the elastin-rich medial layers of arteries in the majority of seniors, diabetic, and chronic kidney disease patients, causing severe cardiovascular complications. There is no cure for medial calcification, and the mechanism of mineral formation on elastin layers is unknown. Here we propose cross-linked elastin-like polypeptide membranes as models to study medial calcification.

View Article and Find Full Text PDF

Natural α-helical cationic antimicrobial peptide (CAP) sequences are predominantly amphipathic, with only ca. 2% containing four or more consecutive positively charged amino acids (Lys/Arg). We have designed synthetic CAPs that deviate from these natural sequences, as typified by the charge-clustered peptide KKKKKKAAFAAWAAFAA-NH (termed 6K-F17), which displays high antimicrobial activity with no toxicity to mammalian cells.

View Article and Find Full Text PDF

Liquid-liquid phase separation resulting in formation of colloidal droplets has recently attracted attention as a mechanism for rapid and transient assembly of intracellular macromolecules into functional units. Phase separation also appears to be a widespread and evolutionarily ancient mechanism for organization of proteins of the extracellular matrix into fibrillar, polymeric assemblies. Elastin, which provides the physical properties of extensibility and elastic recoil to large arteries, lungs and other tissues, is the best-characterized extracellular matrix protein whose polymeric assembly is initiated by phase separation.

View Article and Find Full Text PDF

Cyclization has been recognized as a valuable technique for increasing the efficacy of small molecule and peptide therapeutics. Here we report the application of a hydrocarbon staple to a rationally-designed cationic antimicrobial peptide (CAP) that acquires increased membrane targeting and interaction vs. its linear counterpart.

View Article and Find Full Text PDF

The Vpu protein of HIV-1 functions to downregulate cell surface localization of host proteins involved in the innate immune response to viral infection. For several target proteins, including the NTB-A and PVR receptors and the host restriction factor tetherin, this antagonism is carried out via direct interactions between the transmembrane domains (TMDs) of Vpu and the target. The Vpu TMD also modulates homooligomerization of this protein, and the tetherin TMD forms homodimers.

View Article and Find Full Text PDF

The amyloid β peptide (Aβ) is a key player in the etiology of Alzheimer disease (AD), yet a systematic investigation of its molecular interactions has not been reported. Here we identified by quantitative mass spectrometry proteins in human brain extract that bind to oligomeric Aβ1-42 (oAβ1-42) and/or monomeric Aβ1-42 (mAβ1-42) baits. Remarkably, the cyclic neuroendocrine peptide somatostatin-14 (SST14) was observed to be the most selectively enriched oAβ1-42 binder.

View Article and Find Full Text PDF

Despite its growing importance in biology and in biomaterials development, liquid-liquid phase separation of proteins remains poorly understood. In particular, the molecular mechanisms underlying simple coacervation of proteins, such as the extracellular matrix protein elastin, have not been reported. Coacervation of the elastin monomer, tropoelastin, in response to heat and salt is a critical step in the assembly of elastic fibers in vivo, preceding chemical cross-linking.

View Article and Find Full Text PDF

Polymeric elastin provides the physiologically essential properties of extensibility and elastic recoil to large arteries, heart valves, lungs, skin and other tissues. Although the detailed relationship between sequence, structure and mechanical properties of elastin remains a matter of investigation, data from both the full-length monomer, tropoelastin, and smaller elastin-like polypeptides have demonstrated that variations in protein sequence can affect both polymeric assembly and tensile mechanical properties. Here we model known splice variants of human tropoelastin (hTE), assessing effects on shape, polymeric assembly and mechanical properties.

View Article and Find Full Text PDF