Biodegradable biopolymers such as polylactic acid and polybutylene succinate are sustainable alternatives to traditional petroleum-based plastics. However, the factors affecting their degradation must be characterized in detail to enable successful utilization. Here we compared the extruder dwell time at three different melt-spinning scales and its influence on the degradation of both polymers.
View Article and Find Full Text PDFThe concept of modular synthetic co-cultures holds considerable potential for biomanufacturing, primarily to reduce the metabolic burden of individual strains by sharing tasks among consortium members. However, current consortia often show unilateral relationships solely, without stabilizing feedback control mechanisms, and are grown in a shared cultivation setting. Such 'one pot' approaches hardly install optimum growth and production conditions for the individual partners.
View Article and Find Full Text PDFManufacturers of technical polymers must increasingly consider the degradability of their products due to the growing public interest in topics such as greenhouse gas emissions and microplastic pollution. Biobased polymers are part of the solution, but they are still more expensive and less well characterized than conventional petrochemical polymers. Therefore, few biobased polymers with technical applications have reached the market.
View Article and Find Full Text PDFIn nature, microorganisms often reside in symbiotic co-existence providing nutrition, stability, and protection for each partner by applying "division of labor." This principle may also be used for the overproduction of targeted compounds in bioprocesses. It requires the engineering of a synthetic co-culture with distributed tasks for each partner.
View Article and Find Full Text PDF