Publications by authors named "Simon Sauve"

Unlabelled: The COVID-19 pandemic has emphasized the importance and need for accessible safe, effective, and versatile vaccine platforms. While approved SARS-CoV-2 vaccines have been instrumental in saving lives and reducing healthcare and economic burdens, the induction of mucosal immunity remains an unmet need. Here, we engineered and evaluated a non-replicating adenovirus 5 (rAd5)-based vaccine expressing the SARS-CoV-2 S1 subunit (rAd5-SARS2-S1).

View Article and Find Full Text PDF

The nucleoprotein (NP) of type A influenza virus (IAV) is highly conserved across all virus strains, making it an attractive candidate antigen for universal vaccines. While various studies have explored NP-induced mucosal immunity, here we interrogated the mechanistic differences between intramuscular (IM) and intranasal (IN) delivery of a recombinant adenovirus carrying NP fused with a bifunctional CD40 ligand. Despite being less effective than IM delivery in inducing systemic cellular immune responses and antibody-dependent cellular cytotoxicity (ADCC), IN immunization elicited superior antigen-specific recall humoral and cellular response in the nasal associated lymphoid tissue (NALT) of the upper respiratory tract, the initial site of immune recognition and elimination of inhaled pathogens.

View Article and Find Full Text PDF

The effectiveness of mRNA vaccines largely depends on their lipid nanoparticle (LNP) component. Herein, we investigate the effectiveness of DLin-KC2-DMA (KC2) and SM-102-based LNPs for the intramuscular delivery of a plasmid encoding B.1.

View Article and Find Full Text PDF

The rising prevalence of Lyme disease (LD) in North America and Europe has emerged as a pressing public health concern. Despite the availability of veterinary LD vaccines, no vaccine is currently available for human use. Outer surface protein C (OspC) found on the outer membrane of the causative agent, , has been identified as a promising target for LD vaccine development due to its sustained expression during mammalian infection.

View Article and Find Full Text PDF

In recent years, lipid nanoparticles (LNPs) have emerged as a revolutionary technology for vaccine delivery. LNPs serve as an integral component of mRNA vaccines by protecting and transporting the mRNA payload into host cells. Despite their prominence in mRNA vaccines, there remains a notable gap in our understanding of the potential application of LNPs for the delivery of DNA vaccines.

View Article and Find Full Text PDF

Introduction: The incidence of Lyme disease (LD) in Canada and the United States has risen over the last decade, nearing 480,000 cases each year. sensu lato, the causative agent of LD, is transmitted to humans through the bite of an infected tick, resulting in flu-like symptoms and often a characteristic bull's-eye rash. In more severe cases, disseminated bacterial infection can cause arthritis, carditis and neurological impairments.

View Article and Find Full Text PDF

Influenza and Respiratory Syncytial virus (RSV) infections together contribute significantly to the burden of acute lower respiratory tract infections. Despite the disease burden, no approved RSV vaccine is available. While approved vaccines are available for influenza, seasonal vaccination is required to maintain protection.

View Article and Find Full Text PDF

Background: For diabetes mellitus treatment plans, the consistency and quality of insulin drug products are crucial for patient well-being. Because biologic drugs, such as insulin, are complex heterogeneous products, the methods for drug product evaluation should be carefully validated for use. As such, these criteria are rigorously evaluated and monitored by national authorities.

View Article and Find Full Text PDF

Protein-based vaccines are playing an increasingly important role in the COVID-19 pandemic. As late-stage clinical data are finalized and released, the number of protein-based vaccines expected to enter the market will increase significantly. Most protein-based COVID-19 vaccines are based on the SARS-CoV-2 spike protein (S-protein), which plays a major role in viral attachment to human cells and infection.

View Article and Find Full Text PDF

Influenza is a major public health concern causing millions of hospitalizations every year. The current vaccines need annual updating based on prediction of likely strains in the upcoming season. However, mismatches between vaccines and the actual circulating viruses can occur, reducing vaccine effectiveness significantly because of the remarkably high rate of mutation in the viral glycoprotein, hemagglutinin (HA).

View Article and Find Full Text PDF

SARS-CoV-2 infections present a tremendous threat to public health. Safe and efficacious vaccines are the most effective means in preventing the infections. A variety of vaccines have demonstrated excellent efficacy and safety around the globe.

View Article and Find Full Text PDF

A quarter of all seasonal influenza cases are caused by type B influenza virus (IBV) that also dominates periodically. Here, we investigated a recombinant adenovirus vaccine carrying a synthetic HA2 representing the consensus sequence of all IBV hemagglutinins. The vaccine fully protected mice from lethal challenges by IBV of both genetic lineages, demonstrating its breadth of protection.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a leading cause of respiratory infections worldwide and disease management measures are hampered by the lack of a safe and effective vaccine against the infection. We constructed a novel recombinant RSV vaccine candidate based on a deletion mutant vaccinia virus platform, in that the host range genes E3L and K3L were deleted (designated as VACVΔE3LΔK3L) and a poxvirus K3L ortholog gene was used as a marker for the rapid and efficient selection of recombinant viruses. The safety of the modified vaccinia virus was investigated by intranasal administration of BALB/c mice with the modified vaccinia vector using a dose known to be lethal in the wild-type Western Reserve.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) produced by human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are currently investigated for their clinical effectiveness towards immune-mediated diseases. The large amounts of stem cell-derived EVs required for clinical testing suggest that bioreactor production systems may be a more amenable alternative than conventional EV production methods for manufacturing products for therapeutic use in humans.

Methods: To characterize the potential utility of these systems, EVs from four hBM-MSC donors were produced independently using a hollow-fiber bioreactor system under a cGMP-compliant procedure.

View Article and Find Full Text PDF

Characterization of the structural diversity of glycans by liquid chromatography-tandem mass spectrometry (LC-MS/MS) remains an analytical challenge in large-scale glycomics applications because of the presence of heterogeneous composition, ubiquitous isomers, lability of post-translational glycan modifications, and complexity of data interpretation. High-resolution separation of glycan isomers differentiating from positional, linkage, branching, and anomeric structures is often a prerequisite to ensure the comprehensive glycan identification. Here, we developed a straightforward method using self-packed capillary porous graphitic carbon (PGC) columns for nanoflow LC-MS/MS analyses of native glycans released from glycoproteins.

View Article and Find Full Text PDF
Article Synopsis
  • - Zika virus (ZIKV) poses a significant public health risk, with severe outcomes like congenital microcephaly in newborns linked to the infection of neural progenitor cells in the fetal brain.
  • - The study utilized quantitative proteomics to analyze protein expression changes during ZIKV replication in neural progenitor cells, revealing alterations in various signaling pathways related to neurogenesis, apoptosis, and metabolism.
  • - Key findings highlight the differential regulation of specific pathways, such as Ephrin Receptor and PPAR signaling, emphasizing the complexity of virus-host interactions and their implications for understanding ZIKV-related microcephaly.
View Article and Find Full Text PDF

Influenza vaccine potency is determined by the quantification of immunologically active hemagglutinin capable of eliciting neutralizing antibodies upon immunization. Currently, the single radial immunodiffusion (SRID) method is the standard in vitro potency assay used for lot release of seasonal inactivated influenza vaccines. Despite the proven usage of SRID, significant limitations such as the time-consuming preparation of reagents and limited dynamic range warrant the need for the development of alternative potency assays.

View Article and Find Full Text PDF

Chitosan is a polysaccharide capable of augmenting immune responses with a proven safety record in animals and humans. These properties make it a potentially attractive agent for the prevention and treatment of infectious disease. Infection by respiratory syncytial virus (RSV) is the leading cause of serious lower respiratory disease in young children throughout the world.

View Article and Find Full Text PDF

We have previously identified extensive glycation, bound fatty acids and increased quantities of protein aggregates in commercially available recombinant HSA (rHSA) expressed in Oryza sativa (Asian rice) (OsrHSA) when compared to rHSA from other expression systems. We propose these differences may alter some attributes of nanoparticles fabricated with OsrHSA, as studies have associated greater quantities of aggregates with increased nanoparticle diameters. To determine if this is the case, nanoparticles were fabricated with OsrHSA from various suppliers using ethanol desolvation and subsequent glutaraldehyde cross-linking.

View Article and Find Full Text PDF

Cross-reacting-material 197 (CRM197) is a naturally occurring non-toxic mutant of diphtheria toxin (DT) that is one of the few carrier protein used in the manufacture of polysaccharide vaccines targeting bacterial pathogens such as Neisseria meningitidis, Streptococcus pneumaniae and Haemophilus influenzae. A detailed explanation in structural terms for the lack of toxicity has started to emerge with the report of the X-ray structure of CRM197. Here, we present an NMR spectroscopy study of the wild-type catalytic domain of diphtheria toxin and the effects of mutations at residue 52 on its conformation.

View Article and Find Full Text PDF

Seasonal inactivated quadrivalent influenza vaccines are currently formulated to include antigens from two strains of influenza A and a strain from each of the two circulating influenza B virus lineages. However, the applicability of the potency assay currently required for the release of vaccines has been hindered due to cross-reactivity between the two B strains. In this study, a reversed-phase high-performance liquid chromatography method previously developed for the separation and quantitative determination of the hemagglutinin content in trivalent influenza vaccine preparations was further extended and found to be adaptable for the assessment of all four hemagglutinin antigens present in quadrivalent influenza vaccines.

View Article and Find Full Text PDF

A peptide encompassing the conserved hydrophobic region and the first β-strand of the prion protein (PrP(110-136)) shown to interact with the surface of dodecylphosphocholine micelles adopts an α-helical conformation that is localized below the head-group layer. This surface-bound peptide has a half-life of one day, and readily initiates the formation of amyloid fibrils. The presence of the latter was confirmed using birefringence microscopy upon Congo red binding and thioflavin T-binding induced fluorescence.

View Article and Find Full Text PDF

Purpose: Filgrastim is the generic name for recombinant methionyl human granulocyte colony-stimulating factor (r-metHuG-CSF). It is marketed under the brand name Neupogen® by Amgen. Since this product has lost patent protection, many biosimilar versions have been approved or are in the process of filing for market authorization throughout the world.

View Article and Find Full Text PDF

Enzymatic addition of GalNAc to isotopically labeled IFNα2a produced in Escherichia coli yielded the O-linked glycoprotein GalNAcα-[(13)C,(15)N]IFNα2a. The three-dimensional structure of GalNAcα-IFNα2a has been determined in solution by NMR spectroscopy at high resolution. Proton-nitrogen heteronuclear Overhauser enhancement measurements revealed that the addition of a single monosaccharide unit at Thr-106 significantly slowed motions of the glycosylation loop on the nanosecond time scale.

View Article and Find Full Text PDF

Diphtheria is a serious upper respiratory tract disease caused by the diphtheria toxin (DT) secreted from the bacteria Corynebacterium diphtheriae. Vaccination is the best way to protect against this infectious disease. Diphtheria vaccines are prepared by isolating, purifying and chemically deactivating DT.

View Article and Find Full Text PDF