Selective retinal pigment epithelium (RPE) photodisruption requires reliable real-time feedback dosimetry (RFD) to prevent unwanted overexposure. In this study, optical coherence tomography (OCT) based RFD was investigated in ex vivo porcine eyes exposed to laser pulses of 8 µs duration (wavelength: 532 nm, exposure area: 90 × 90 µm, radiant exposure: 247 to 1975 mJ/µm). For RFD, fringe washouts in time-resolved OCT M-scans (central wavelength: 870 nm, scan rate: 85 kHz) were compared to an RPE cell viability assay.
View Article and Find Full Text PDFOptical microsurgery confined to the retinal pigment epithelium (RPE) requires locally optimized laser parameters and reliable real-time feedback dosimetry (RFD) to prevent unwanted neuroretinal overexposure. This study aimed to compare pulses of different durations and application modes (single, ramp, burst). Moreover, optical coherence tomography (OCT)-based RFD was investigated in an ex vivo experiment, utilizing nine porcine eyes that were exposed to laser pulses of 8, 12, 16 and 20 µs duration (wavelength: 532 nm, exposure area: 90 × 90 µm, radiant exposure: 247 to 1975 mJ/µm).
View Article and Find Full Text PDFThe prevalent cause of retinal detachment is a full-thickness retinal break and the ingress of fluid into the subretinal space. To prevent progression of the detachment, laser photocoagulation (LPC) lesions are placed around the break in clinical practice to seal the tissue. Unlike the usual application under indirect ophthalmoscopy, we developed a semi-automatic treatment planning software based on a sequence of optical coherence tomography (OCT) scans to perform navigated LPC treatment.
View Article and Find Full Text PDFPurpose: Cell therapy is a promising treatment for retinal pigment epithelium (RPE)-associated eye diseases such as age-related macular degeneration. Herein, selective microsecond laser irradiation targeting RPE cells was used for minimally invasive, large-area RPE removal in preparation for delivery of retinal cell therapeutics.
Methods: Ten rabbit eyes were exposed to laser pulses 8, 12, 16, and 20 µs in duration (wavelength, 532 nm; top-hat beam profile, 223 × 223 µm²).