In the absence of liquid suspension, dry biofilms can form upon hard surfaces within a hospital environment, representing a healthcare-associated infection risk. Probiotic cleansers using generally recognized as safe organisms, such as those of the Bacillus genus, represent a potential strategy for the reduction of dry biofilm bioburden. The mechanisms of action and efficacy of these cleaners are, however, poorly understood.
View Article and Find Full Text PDFMupirocin (MUP) is an effective topical antibiotic with poor skin permeability; however, its skin permeability can be improved by a nanoemulsion formulation based on eucalyptus oil or eucalyptol. Despite this improvement, the nanoemulsion has limitations, such as low viscosity, low spreadability, and poor retention on the skin. To overcome these limitations, the aim of this study was to develop a nanoemulgel formulation that would enhance its rheological behaviour and physicochemical properties.
View Article and Find Full Text PDFExtremes of pH present a challenge to microbial life and our understanding of survival strategies for microbial consortia, particularly at high pH, remains limited. The utilization of extracellular polymeric substances within complex biofilms allows micro-organisms to obtain a greater level of control over their immediate environment. This manipulation of the immediate environment may confer a survival advantage in adverse conditions to biofilms.
View Article and Find Full Text PDFA cement-based geological disposal facility (GDF) is one potential option for the disposal of intermediate level radioactive wastes. The presence of both organic and metallic materials within a GDF provides the opportunity for both acetoclastic and hydrogenotrophic methanogenesis. However, for these processes to proceed, they need to adapt to the alkaline environment generated by the cementitious materials employed in backfilling and construction.
View Article and Find Full Text PDFAlkaline environments represent a significant challenge to the growth of micro-organisms. Despite this, there are a number of alkaline environments which contain active microbial communities. Here we describe the genome of a diazotrophic, alkalitolerant strain of which was isolated from a microcosm seeded with hyperalkaline soils resulting from lime depositions.
View Article and Find Full Text PDFBauxite residue is a high volume byproduct of alumina manufacture which is commonly disposed of in purpose-built bauxite residue disposal areas (BRDAs). Natural waters interacting with bauxite residue are characteristically highly alkaline, and have elevated concentrations of Na, Al, and other trace metals. Rehabilitation of BRDAs is therefore often costly and resource/infrastructure intensive.
View Article and Find Full Text PDFThe ability of micro-organisms to degrade isosaccharinic acids (ISAs) while tolerating hyperalkaline conditions is pivotal to our understanding of the biogeochemistry associated within these environs, but also in scenarios pertaining to the cementitious disposal of radioactive wastes. An alkalitolerant, ISA degrading micro-organism was isolated from the hyperalkaline soils resulting from lime depositions. Here, we report the first whole-genome sequence, ISA degradation profile and carbohydrate preoteome of a Macellibacteroides fermentans strain HH-ZS, 4.
View Article and Find Full Text PDFHere, we present the whole-genome sequence of an environmental Gram-negative Alishewanella aestuarii strain (HH-ZS), isolated from the hyperalkaline contaminated soil of a historical lime kiln in Buxton, United Kingdom.
View Article and Find Full Text PDFDiasteriomeric isosaccharinic acid (ISA) is an important consideration within safety assessments for the disposal of the United Kingdoms' nuclear waste legacy, where it may potentially influence radionuclide migration. Since the intrusion of micro-organisms may occur within a disposal concept, the impact of ISA may be impacted by microbial metabolism. Within the present study we have established two polymicrobial consortia derived from a hyperalkaline soil.
View Article and Find Full Text PDFCr(VI) is an important contaminant found at sites where chromium ore processing residue (COPR) is deposited. No low cost treatment exists for Cr(VI) leaching from such sites. This study investigated the mechanism of interaction of alkaline Cr(VI)-containing leachate with an Fe(II)-containing organic matter rich soil beneath the waste.
View Article and Find Full Text PDFOne design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0
Two isolates, one from the genus Pseudomonas and the second from Citrobacter, were isolated from a wound dressing-associated biofilm. Following whole-genome sequencing, the two isolates presented genes encoding for resistance to antibiotics and those involved in exopolysaccharide production.
View Article and Find Full Text PDFA clinical strain of Stenotrophomonas maltophilia (designated strain 53) was obtained, and a whole-genome sequence was generated. The subsequent draft whole-genome sequence demonstrated the presence of a number of genes encoding for proteins involved in resistance to a number of antimicrobial therapies.
View Article and Find Full Text PDFThe contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12.
View Article and Find Full Text PDFAn alkaliphilic microorganism from the genus Exiguobacterium, Exiguobacterium sp. strain HUD was isolated from a fermentative, methanogenic polymicrobial microcosm operating at pH 10. The draft genome shows the presence of genes encoding for the metabolism of a range of carbohydrates under both aerobic and anaerobic conditions.
View Article and Find Full Text PDFThe anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates.
View Article and Find Full Text PDFJ Foot Ankle Res
February 2014
Background: Infection control is a key issue in podiatry as it is in all forms of clinical practice. Airborne contamination may be particularly important in podiatry due to the generation of particulates during treatment. Consequently, technologies that prevent contamination in podiatry settings may have a useful role.
View Article and Find Full Text PDF