Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone.
View Article and Find Full Text PDFThe design of complex inorganic materials is a challenge because of the diversity of their potential structures. We present a method for the computational identification of materials containing multiple atom types in multiple geometries by ranking candidate structures assembled from extended modules containing chemically realistic atomic environments. Many existing functional materials can be described in this way, and their properties are often determined by the chemistry and electronic structure of their constituent modules.
View Article and Find Full Text PDFHexanethiolate gold monolayer-protected clusters (C6-MPCs) with an average core diameter of 1.8 nm and a capacitance of 0.6 aF are synthesised by a two-phase method.
View Article and Find Full Text PDFA novel strategy to direct the oxygen reduction reaction to preferentially produce H(2)O(2) is formulated and evaluated. The approach combines the inertness of Au nanoparticles toward oxidation, with the improved O(2) sticking probability of isolated transition metal "guest" atoms embedded in the Au "host". DFT modeling was employed to screen for the best alloy candidates.
View Article and Find Full Text PDFGold nanoparticles are obtained by reduction of a Au(iii) precursor within an agarose hydrogel where they form percolating networks upon partial dehydration and shrinkage of the gel.
View Article and Find Full Text PDF