The selection of highly productive genotypes with stable performance across environments is a major challenge of plant breeding programs due to genotype-by-environment (GE) interactions. Over the years, different metrics have been proposed that aim at characterizing the superiority and/or stability of genotype performance across environments. However, these metrics are traditionally estimated using phenotypic values only and are not well suited to an unbalanced design in which genotypes are not observed in all environments.
View Article and Find Full Text PDFSix QTLs of resistance to sugarcane orange rust were identified in modern interspecific hybrids by GWAS. For five of them, the resistance alleles originated from S. spontaneum.
View Article and Find Full Text PDFEpistasis, commonly defined as interaction effects between alleles of different loci, is an important genetic component of the variation of phenotypic traits in natural and breeding populations. In addition to its impact on variance, epistasis can also affect the expected performance of a population and is then referred to as directional epistasis. Before the advent of genomic data, the existence of epistasis (both directional and non-directional) was investigated based on complex and expensive mating schemes involving several generations evaluated for a trait of interest.
View Article and Find Full Text PDFThe efficiency of genomic selection strongly depends on the prediction accuracy of the genetic merit of candidates. Numerous papers have shown that the composition of the calibration set is a key contributor to prediction accuracy. A poorly defined calibration set can result in low accuracies, whereas an optimized one can considerably increase accuracy compared to random sampling, for a same size.
View Article and Find Full Text PDFNew forms of the coefficient of determination can help to forecast the accuracy of genomic prediction and optimize experimental designs in multi-environment trials with genotype-by-environment interactions. In multi-environment trials, the relative performance of genotypes may vary depending on the environmental conditions, and this phenomenon is commonly referred to as genotype-by-environment interaction (G[Formula: see text]E). With genomic prediction, G[Formula: see text]E can be accounted for by modeling the genetic covariance between trials, even when the overall experimental design is highly unbalanced between trials, thanks to the genomic relationship between genotypes.
View Article and Find Full Text PDFThe strong genetic structure observed in Mediterranean oats affects the predictive ability of genomic prediction as well as the performance of training set optimization methods. In this study, we investigated the efficiency of genomic prediction and training set optimization in a highly structured population of cultivars and landraces of cultivated oat (Avena sativa) from the Mediterranean basin, including white (subsp. sativa) and red (subsp.
View Article and Find Full Text PDFA major barrier to the wider use of supervised learning in emerging applications, such as genomic selection, is the lack of sufficient and representative labeled data to train prediction models. The amount and quality of labeled training data in many applications is usually limited and therefore careful selection of the training examples to be labeled can be useful for improving the accuracies in predictive learning tasks. In this paper, we present an R package, TrainSel, which provides flexible, efficient, and easy-to-use tools that can be used for the selection of training populations (STP).
View Article and Find Full Text PDFPopulations structured into genetic groups may display group-specific linkage disequilibrium, mutations, and/or interactions between quantitative trait loci and the genetic background. These factors lead to heterogeneous marker effects affecting the efficiency of genomic prediction, especially for admixed individuals. Such individuals have a genome that is a mosaic of chromosome blocks from different origins, and may be of interest to combine favorable group-specific characteristics.
View Article and Find Full Text PDFWhen handling a structured population in association mapping, group-specific allele effects may be observed at quantitative trait loci (QTLs) for several reasons: (i) a different linkage disequilibrium (LD) between SNPs and QTLs across groups, (ii) group-specific genetic mutations in QTL regions, and/or (iii) epistatic interactions between QTLs and other loci that have differentiated allele frequencies between groups. We present here a new genome-wide association (GWAS) approach to identify QTLs exhibiting such group-specific allele effects. We developed genetic materials including admixed progeny from different genetic groups with known genome-wide ancestries (local admixture).
View Article and Find Full Text PDFPopulation structure affects genomic selection efficiency as well as the ability to forecast accuracy using standard GBLUP. Genomic prediction models usually assume that the individuals used for calibration belong to the same population as those to be predicted. Most of the a priori indicators of precision, such as the coefficient of determination (CD), were derived from those same models.
View Article and Find Full Text PDF