Background: Repetitive DNA is a major component of plant genomes and is thought to be a driver of evolutionary novelty. Describing variation in repeat content among individuals and between populations is key to elucidating the evolutionary significance of repetitive DNA. However, the cost of producing references genomes has limited large-scale intraspecific comparisons to a handful of model organisms where multiple reference genomes are available.
View Article and Find Full Text PDFThe maize genome experienced an ancient whole genome duplication ∼10 MYA and the duplicate subgenomes have since experienced reciprocal gene loss such that many genes have returned to single-copy status. This process has not affected the subgenomes equally; reduced gene expression in one of the subgenomes mitigates the consequences of mutations and gene deletions and is thought to drive higher rates of fractionation. Here, we use published data to show that, in accordance with predictions of this model, paralogs with greater expression contribute more to phenotypic variation compared with their lowly expressed counterparts.
View Article and Find Full Text PDFDomesticated cotton species provide raw material for the majority of the world's textile industry. Two independent domestication events have been identified in allopolyploid cotton, one in Upland cotton (Gossypium hirsutum L.) and the other to Egyptian cotton (Gossypium barbadense L.
View Article and Find Full Text PDFStabilization of transposable element (TE) copy number involves the biosynthesis of short silencing RNAs (siRNAs) and further initialization of siRNA-mediated TE silencing. To gain insight into the relationship between the biosynthesis of siRNAs and their source TEs, we examined the co-evolutionary dynamics and expression of these two entities by characterizing the siRNA distribution across the genome of Gossypium raimondii Ulbr. We identified an unusual region at the 3' end of chromosome 1 with significantly enriched siRNA coverage.
View Article and Find Full Text PDFPlants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size.
View Article and Find Full Text PDFThe importance of whole-genome multiplication (WGM) in plant evolution has long been recognized. In flowering plants, WGM is both ubiquitous and in many lineages cyclical, each round followed by substantial gene loss (fractionation). This process may be biased with respect to duplicated chromosomes, often with overexpression of genes in less fractionated relative to more fractionated regions.
View Article and Find Full Text PDFBackground: Centromeric DNA sequences alone are neither necessary nor sufficient for centromere specification. The centromere specific histone, CenH3, evolves rapidly in many species, perhaps as a coevolutionary response to rapidly evolving centromeric DNA. To gain insight into CenH3 evolution, we characterized patterns of nucleotide and protein diversity among diploids and allopolyploids within three diverse angiosperm genera, Brassica, Oryza, and Gossypium (cotton), with a focus on evidence for diversifying selection in the various domains of the CenH3 gene.
View Article and Find Full Text PDFPolyploidy, or whole genome multiplication, is ubiquitous among angiosperms. Many crop species are relatively recent allopolyploids, resulting from interspecific hybridization and polyploidy. Thus, an appreciation of the evolutionary consequences of (allo)polyploidy is central to our understanding of crop plant domestication, agricultural improvement, and the evolution of angiosperms in general.
View Article and Find Full Text PDFWhole genome duplication (WGD) is widespread in flowering plants and is a driving force in angiosperm diversification. The redundancy introduced by WGD allows the evolution of novel gene interactions and functions, although the patterns and processes of diversification are poorly understood. We identified ∼ 2,000 pairs of paralogous genes in Gossypium raimondii (cotton) resulting from an approximately 60 My old 5- to 6-fold ploidy increase.
View Article and Find Full Text PDFRecent advances have highlighted the ubiquity of whole-genome duplication (polyploidy) in angiosperms, although subsequent genome size change and diploidization (returning to a diploid-like condition) are poorly understood. An excellent system to assess these processes is provided by Nicotiana section Repandae, which arose via allopolyploidy (approximately 5 million years ago) involving relatives of Nicotiana sylvestris and Nicotiana obtusifolia. Subsequent speciation in Repandae has resulted in allotetraploids with divergent genome sizes, including Nicotiana repanda and Nicotiana nudicaulis studied here, which have an estimated 23.
View Article and Find Full Text PDFBackground: Tandemly arranged nuclear ribosomal DNA (rDNA), encoding 18S, 5.8S and 26S ribosomal RNA (rRNA), exhibit concerted evolution, a pattern thought to result from the homogenisation of rDNA arrays. However rDNA homogeneity at the single nucleotide polymorphism (SNP) level has not been detailed in organisms with more than a few hundred copies of the rDNA unit.
View Article and Find Full Text PDFAllopolyploidy (interspecific hybridisation and polyploidy) has played a significant role in the evolutionary history of angiosperms and can result in genomic, epigenetic and transcriptomic perturbations. We examine the immediate effects of allopolyploidy on repetitive DNA by comparing the genomes of synthetic and natural Nicotiana tabacum with diploid progenitors N. tomentosiformis (paternal progenitor) and N.
View Article and Find Full Text PDFPremise Of The Study: Hybridization and polyploidization (allopolyploidy) are ubiquitous in the evolution of plants, but tracing the origins and subsequent evolution of the constituent genomes of allopolyploids has been challenging. Genome doubling greatly complicates genetic analyses, and this has long hindered investigation in that most allopolyploid species are "nonmodel" organisms. However, recent advances in sequencing and genomics technologies now provide unprecedented opportunities to analyze numerous genetic markers in multiple individuals in any organism.
View Article and Find Full Text PDFWe used next generation sequencing to characterize and compare the genomes of the recently derived allotetraploid, Nicotiana tabacum (<200,000 years old), with its diploid progenitors, Nicotiana sylvestris (maternal, S-genome donor), and Nicotiana tomentosiformis (paternal, T-genome donor). Analysis of 14,634 repetitive DNA sequences in the genomes of the progenitor species and N. tabacum reveal all major types of retroelements found in angiosperms (genome proportions range between 17-22.
View Article and Find Full Text PDFBackground: The genus Spartina exhibits extensive hybridization and includes classic examples of recent speciation by allopolyploidy. In the UK there are two hexaploid species, S. maritima and S.
View Article and Find Full Text PDFAllopolyploids represent natural experiments in which DNA sequences from different species are combined into a single nucleus and then coevolve, enabling us to follow the parental genomes, their interactions and evolution over time. Here, we examine the fate of satellite DNA over 5 million yr of divergence in plant genus Nicotiana (family Solanaceae). We isolated subtelomeric, tandemly repeated satellite DNA from Nicotiana diploid and allopolyploid species and analysed patterns of inheritance and divergence by sequence analysis, Southern blot hybridization and fluorescent in situ hybridization (FISH).
View Article and Find Full Text PDF