Porphyry-type deposits are a vital source of green technology metals such as copper and molybdenum. They typically form in subduction-related settings from large, long-lived magmatic systems. The most widely accepted model for their formation requires that mantle-derived magmas undergo an increase in volatiles and ore-forming constituents in mid- to lower crustal reservoirs over millions of years, however, this is mostly based on observations from shallow, sporadically exposed parts of porphyry systems.
View Article and Find Full Text PDFMost known porphyry Cu deposits formed in the Phanerozoic and are exclusively associated with moderately oxidized, sulfur-rich, hydrous arc-related magmas derived from partial melting of the asthenospheric mantle metasomatized by slab-derived fluids. Yet, whether similar metallogenic processes also operated in the Precambrian remains obscure. Here we address the issue by investigating the origin, fO, and S contents of calc-alkaline plutonic rocks associated with the Haib porphyry Cu deposit in the Paleoproterozoic Richtersveld Magmatic Arc (southern Namibia), an interpreted mature island-arc setting.
View Article and Find Full Text PDFGeostand Geoanal Res
December 2018
Here, we document a detailed characterisation of two zircon gemstones, GZ7 and GZ8. Both stones had the same mass at 19.2 carats (3.
View Article and Find Full Text PDF