Publications by authors named "Simon R T Neil"

Drosophila have been used as model organisms to explore both the biophysical mechanisms of animal magnetoreception and the possibility that weak, low-frequency anthropogenic electromagnetic fields may have biological consequences. In both cases, the presumed receptor is cryptochrome, a protein thought to be responsible for magnetic compass sensing in migratory birds and a variety of magnetic behavioural responses in insects. Here, we demonstrate that photo-induced electron transfer reactions in Drosophila melanogaster cryptochrome are indeed influenced by magnetic fields of a few millitesla.

View Article and Find Full Text PDF

We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries.

View Article and Find Full Text PDF

Broadband cavity-enhanced absorption spectroscopy (BBCEAS) is shown to be a sensitive method for the detection of magnetic field effects (MFEs) in two flavin-based chemical reactions which are simple models for cryptochrome magnetoreceptors. The advantages of optical cavity-based detection and (pseudo-white-light) supercontinuum radiation have been combined to provide full spectral coverage across the whole of the visible spectrum (425 < λ < 700 nm). This region covers the absorbance spectra of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) as well as their photogenerated radicals.

View Article and Find Full Text PDF

Broadband cavity-enhanced absorption spectroscopy has been used to record, in real time, the absorption spectrum of microlitre volume aqueous phase droplets within a microfluidic chip assembly. Using supercontinuum radiation and broadband coated external mirrors, the full visible spectrum (430 nm < λ < 700 nm) of each passing droplet is acquired in situ at high repetition rates (273 Hz/3.66 ms acquisition time) and high sensitivity (α(min) < 10(-2) cm(-1)).

View Article and Find Full Text PDF

The study of radical pair intermediates in biological systems has been hampered by the low sensitivity of the optical techniques usually employed to investigate these highly reactive species. Understanding the physical principles governing the spin-selective and magneto-sensitive yields and kinetics of their reactions is essential in identifying the mechanism governing bird migration, and might have significance in the discussion of potential health hazards of electromagnetic radiation. Here, we demonstrate the powerful capabilities of optical cavity-enhanced techniques, such as cavity ring-down spectroscopy (CRDS) in monitoring radical recombination reactions and associated magnetic field effects (MFEs).

View Article and Find Full Text PDF

Evanescent wave cavity ring-down spectroscopy (EW-CRDS) is a surface sensitive technique, which allows optical absorption measurements at interfaces with good time resolution. In EW-CRDS, a pulsed or modulated laser beam is coupled into an optical cavity which consists of at least one optical element, such as a silica prism, at the surface of which the beam undergoes total internal reflection (TIR). At the position of TIR, an evanescent field is established whose amplitude decays exponentially with distance from the boundary.

View Article and Find Full Text PDF

A white light-emitting diode (LED) with emission between 420 and 700 nm and a supercontinuum (SC) source with emission between 450 and 2500 nm have been compared for use in evanescent wave broadband cavity-enhanced absorption spectroscopy (EW-BB-CEAS). The method is calibrated using a dye with known absorbance. While the LED is more economic as an excitation source, the SC source is superior both in terms of baseline noise (noise equivalent absorbances lower than 10(-5) compared to 10(-4) absorbance units (a.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionklkh940tqf7rkp7ee6v2qddfr4n7o8l5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once