Publications by authors named "Simon R Green"

Article Synopsis
  • * Pks13 has been identified as a crucial target for developing new growth inhibitors for TB, with prior attempts using benzofuran inhibitors halted due to safety concerns.
  • * Researchers have discovered a novel series of oxadiazole inhibitors that effectively target Pks13, showing better potency and safety profiles compared to previous compounds.
View Article and Find Full Text PDF

Enzymes involved in rescuing stalled ribosomes and recycling translation machinery are ubiquitous in bacteria and required for growth. Peptidyl tRNA drop-off is a type of abortive translation that results in the release of a truncated peptide that is still bound to tRNA (peptidyl tRNA) into the cytoplasm. Peptidyl tRNA hydrolase (Pth) recycles the released tRNA by cleaving off the unfinished peptide and is essential in most bacteria.

View Article and Find Full Text PDF

Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described.

View Article and Find Full Text PDF
Article Synopsis
  • Due to rising drug resistance in tuberculosis patients, there is a critical demand for new drugs targeting novel mechanisms to bypass existing resistance.
  • Benzofuran has shown potential as a TB treatment by targeting the thioesterase domain of Pks13, but it poses a risk of inhibiting the hERG cardiac ion channel, leading to heart irregularities.
  • Although the research team improved the compound's safety profile, they ultimately halted development due to persistent cardiac concerns, yet the study supports Pks13 as a promising target for new TB drugs and encourages exploring different chemical structures.
View Article and Find Full Text PDF

Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets.

View Article and Find Full Text PDF

Tryptophan biosynthesis represents an important potential drug target for new anti-TB drugs. We identified a series of indole-4-carboxamides with potent antitubercular activity. In vitro, Mycobacterium tuberculosis (Mtb) acquired resistance to these compounds through three discrete mechanisms: (1) a decrease in drug metabolism via loss-of-function mutations in the amidase that hydrolyses these carboxamides, (2) an increased biosynthetic rate of tryptophan precursors via loss of allosteric feedback inhibition of anthranilate synthase (TrpE), and (3) mutation of tryptophan synthase (TrpAB) that decreased incorporation of 4-aminoindole into 4-aminotryptophan.

View Article and Find Full Text PDF
Article Synopsis
  • There's an urgent need for new oral drugs to combat multi-drug-resistant tuberculosis (TB), particularly those targeting MmpL3.
  • Several spirocycle compounds were identified from phenotypic screening, showing potential effectiveness but also presenting cytotoxic risks due to their lipophilic nature and basic amine groups.
  • Optimizations led to the discovery of a new zwitterion series with improved properties, but unfortunately, one identified compound lacked efficacy in acute TB infection models despite demonstrating bactericidal activity under certain conditions.
View Article and Find Full Text PDF
Article Synopsis
  • Coenzyme A (CoA) is essential for life and plays a key role in metabolic processes, making its biosynthesis an attractive drug target, especially for treating Mycobacterium tuberculosis.
  • The enzyme CoaBC, a bifunctional protein, is crucial for CoA production and its depletion is lethal to M. tuberculosis.
  • Researchers have characterized the structure of CoaBC from Mycobacterium smegmatis and discovered new inhibitors that target a unique site on the CoaB enzyme, potentially leading to effective treatments for tuberculosis.
View Article and Find Full Text PDF

Phenotypic screening of a Medicines for Malaria Venture compound library against () identified a cluster of pan-active 2-pyrazolylpyrimidinones. The biology triage of these actives using various tool strains of suggested a novel mechanism of action. The compounds were bactericidal against replicating and retained potency against clinical isolates of .

View Article and Find Full Text PDF

has an unusual outer membrane that lacks canonical porin proteins for the transport of small solutes to the periplasm. We discovered that 3,3--di(methylsulfonyl)propionamide (3bMP1) inhibits the growth of , and resistance to this compound is conferred by mutation within a member of the proline-proline-glutamate (PPE) family, PPE51. Deletion of PPE51 rendered cells unable to replicate on propionamide, glucose, or glycerol.

View Article and Find Full Text PDF

Mechanisms of magnesium homeostasis in are poorly understood. Here, we describe the characterization of a pyrimidinetrione amide scaffold that disrupts magnesium homeostasis in the pathogen by direct binding to the CorA Mg/Co transporter. Mutations in domains of CorA that are predicted to regulate the pore opening in response to Mg ions conferred resistance to this scaffold.

View Article and Find Full Text PDF

With the emergence of multidrug-resistant strains of Mycobacterium tuberculosis there is a pressing need for new oral drugs with novel mechanisms of action. Herein, we describe the identification of a novel morpholino-thiophenes (MOT) series following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis strain H37Rv.

View Article and Find Full Text PDF

Mycobacterium tuberculosis ( MTb) possesses two nonproton pumping type II NADH dehydrogenase (NDH-2) enzymes which are predicted to be jointly essential for respiratory metabolism. Furthermore, the structure of a closely related bacterial NDH-2 has been reported recently, allowing for the structure-based design of small-molecule inhibitors. Herein, we disclose MTb whole-cell structure-activity relationships (SARs) for a series of 2-mercapto-quinazolinones which target the ndh encoded NDH-2 with nanomolar potencies.

View Article and Find Full Text PDF

Our findings reported herein provide support for the benefits of including functional group complexity (FGC) within fragments when screening against protein targets such as Mycobacterium tuberculosis InhA. We show that InhA fragment actives with FGC maintained their binding pose during elaboration. Furthermore, weak fragment hits with functional group handles also allowed for facile fragment elaboration to afford novel and potent InhA inhibitors with good ligand efficiency metrics for optimization.

View Article and Find Full Text PDF

A potent, noncytotoxic indazole sulfonamide was identified by high-throughput screening of >100,000 synthetic compounds for activity against Mycobacterium tuberculosis (Mtb). This noncytotoxic compound did not directly inhibit cell wall biogenesis but triggered a slow lysis of Mtb cells as measured by release of intracellular green fluorescent protein (GFP). Isolation of resistant mutants followed by whole-genome sequencing showed an unusual gene amplification of a 40 gene region spanning from Rv3371 to Rv3411c and in one case a potential promoter mutation upstream of guaB2 (Rv3411c) encoding inosine monophosphate dehydrogenase (IMPDH).

View Article and Find Full Text PDF

Clinical benefits from trastuzumab and other anti-HER2 therapies in patients with HER2 amplified breast cancer remain limited by primary or acquired resistance. To identify potential mechanisms of resistance, we established trastuzumab-resistant HER2 amplified breast cancer cells by chronic exposure to trastuzumab treatment. Genomewide copy-number variation analyses of the resistant cells compared with parental cells revealed a focal amplification of genomic DNA containing the cyclin E gene.

View Article and Find Full Text PDF

Aim: Phase I study of seliciclib (CYC202, R-roscovitine), an inhibitor of cyclin-dependent kinases 2, 7 and 9, causing cell cycle changes and apoptosis in cancer cells.

Patients And Methods: This phase I trial aimed at defining the toxicity profile, the maximum tolerated dose (MTD), the recommended phase II dose (RD) and the main pharmacokinetic and pharmacodynamic parameters of oral seliciclib. Three schedules were evaluated: seliciclib given twice daily for 5 consecutive days every 3 weeks (schedule A), for 10 consecutive days followed by 2 weeks off (schedule B) and for 3d every 2 weeks (schedule C).

View Article and Find Full Text PDF

Purpose: Cyclin-dependent kinases (Cdk) and their associated cyclins are targets for lung cancer therapy and chemoprevention given their frequent deregulation in lung carcinogenesis. This study uncovered previously unrecognized consequences of targeting the cyclin E-Cdk-2 complex in lung cancer.

Experimental Design: Cyclin E, Cdk-1, and Cdk-2 were individually targeted for repression with siRNAs in lung cancer cell lines.

View Article and Find Full Text PDF

Purpose: Sapacitabine is an oral deoxycytidine nucleoside analog with a unique mechanism of action that is different from cytarabine.

Patients And Methods: To define the dose-limiting toxicities (DLT) and maximum-tolerated dose (MTD) of sapacitabine given orally twice daily for 7 days every 3 to 4 weeks, or twice daily for 3 days for 2 weeks (days 1 through 3 and days 8 through 10) every 3 to 4 weeks, in refractory-relapse acute leukemia and myelodysplastic syndrome (MDS). A total of 47 patients were treated in the phase I study that used a classical 3 + 3 design.

View Article and Find Full Text PDF

Purpose: Seliciclib is a small-molecule cyclin-dependent kinase inhibitor, which has been reported to induce apoptosis and cell cycle arrest in EBV-negative nasopharyngeal carcinoma cell lines. Because most nasopharyngeal carcinoma patients harbor EBV, we proceeded to evaluate the cytotoxic effects of seliciclib in EBV-positive nasopharyngeal carcinoma models.

Experimental Design: Cytotoxicity of seliciclib was investigated in the EBV-positive cell line C666-1 and the C666-1 and C15 xenograft models.

View Article and Find Full Text PDF

Purpose: The aims of this study were to investigate whether the cyclin-dependent kinase inhibitor seliciclib could synergize with agents that target ErbB receptors and to elucidate the molecular mechanism of the observed synergy.

Experimental Design: Synergy between seliciclib and ErbB receptor targeted agents was investigated in various cell lines using the Calcusyn median effect model. The molecular mechanism of the observed synergy was studied in cultured cells, and the combination of seliciclib and the epidermal growth factor receptor (EGFR) inhibitor erlotinib was evaluated in an H358 xenograft model.

View Article and Find Full Text PDF

Seliciclib is an inhibitor of cyclin-dependent kinases 2, 7 and 9. Its primary mechanism of action is the inhibition of transcription, resulting in the selective downregulation of rapidly cycling mRNA transcripts, including Mcl-1 and cyclin D1. It possesses antitumour activity as a single agent and also synergises with a wide range of cytotoxic and targeted drugs.

View Article and Find Full Text PDF

Seliciclib (CYC202, R-roscovitine) is a cyclin-dependent kinase (CDK) inhibitor that competes for the ATP binding site on the kinase. It has greatest activity against CDK2/cyclin E, CDK7/cyclin H, and CDK9/cyclin T. Seliciclib induces apoptosis from all phases of the cell cycle in tumor cell lines, reduces tumor growth in xenografts in nude mice and is currently in phase II clinical trials.

View Article and Find Full Text PDF

Cyclin-dependent kinase (CDK) inhibitors have the potential to induce cell-cycle arrest and apoptosis in cancer cells. Seliciclib (CYC202 or R-roscovitine) is a potent CDK inhibitor currently undergoing phase-2 clinical testing in lung and B-cell malignancies. Here we studied the in vitro cytotoxic activity of seliciclib against multiple myeloma (MM) cells.

View Article and Find Full Text PDF