Publications by authors named "Simon R Arridge"

Deep learning-based image reconstruction approaches have demonstrated impressive empirical performance in many imaging modalities. These approaches usually require a large amount of high-quality paired training data, which is often not available in medical imaging. To circumvent this issue we develop a novel unsupervised knowledge-transfer paradigm for learned reconstruction within a Bayesian framework.

View Article and Find Full Text PDF

We examine the inverse problem of retrieving sample refractive index information in the context of optical coherence tomography. Using two separate approaches, we discuss the limitations of the inverse problem which lead to it being ill-posed, primarily as a consequence of the limited viewing angles available in the reflection geometry. This is first considered from the theoretical point of view of diffraction tomography under a weak scattering approximation.

View Article and Find Full Text PDF

Diffuse optical tomography (DOT) utilises near-infrared light for imaging spatially distributed optical parameters, typically the absorption and scattering coefficients. The image reconstruction problem of DOT is an ill-posed inverse problem, due to the non-linear light propagation in tissues and limited boundary measurements. The ill-posedness means that the image reconstruction is sensitive to measurement and modelling errors.

View Article and Find Full Text PDF

Imaging is omnipresent in modern society with imaging devices based on a zoo of physical principles, probing a specimen across different wavelengths, energies and time. Recent years have seen a change in the imaging landscape with more and more imaging devices combining that which previously was used separately. Motivated by these hardware developments, an ever increasing set of mathematical ideas is appearing regarding how data from different imaging modalities or channels can be synergistically combined in the image reconstruction process, exploiting structural and/or functional correlations between the multiple images.

View Article and Find Full Text PDF

Near-infrared spectroscopy has proven to be a valuable method to monitor tissue oxygenation and haemodynamics non-invasively and in real-time. Quantification of such parameters requires measurements of the time-of-flight of light through tissue, typically achieved using picosecond pulsed lasers, with their associated cost, complexity, and size. In this work, we present an alternative approach that employs spread-spectrum excitation to enable the development of a small, low-cost, dual-wavelength system using vertical-cavity surface-emitting lasers.

View Article and Find Full Text PDF

Since it was first demonstrated more than a decade ago, the single-pixel camera concept has been used in numerous applications in which it is necessary or advantageous to reduce the channel count, cost, or data volume. Here, three-dimensional (3-D), compressed-sensing photoacoustic tomography (PAT) is demonstrated experimentally using a single-pixel camera. A large area collimated laser beam is reflected from a planar Fabry–Pérot ultrasound sensor onto a digital micromirror device, which patterns the light using a scrambled Hadamard basis before it is collected into a single photodetector.

View Article and Find Full Text PDF

To improve the imaging performance of optical projection tomography (OPT) in live samples, we have explored a parallelized implementation of semi-confocal line illumination and detection to discriminate against scattered photons. Slice-illuminated OPT (sl-OPT) improves reconstruction quality in scattering samples by reducing interpixel crosstalk at the cost of increased acquisition time. For in vivo imaging, this can be ameliorated through the use of compressed sensing on angularly undersampled OPT data sets.

View Article and Find Full Text PDF

The image reconstruction problem (or inverse problem) in photoacoustic tomography is to resolve the initial pressure distribution from detected ultrasound waves generated within an object due to an illumination by a short light pulse. Recently, a Bayesian approach to photoacoustic image reconstruction with uncertainty quantification was proposed and studied with two dimensional numerical simulations. In this paper, the approach is extended to three spatial dimensions and, in addition to numerical simulations, experimental data are considered.

View Article and Find Full Text PDF

We introduce a compact time-domain system for near-infrared spectroscopy using a spread spectrum technique. The proof-of-concept single channel instrument utilises a low-cost commercially available optical transceiver module as a light source, controlled by a Kintex 7 field programmable gate array (FPGA). The FPGA modulates the optical transceiver with maximum-length sequences at line rates up to 10Gb/s, allowing us to achieve an instrument response function with full width at half maximum under 600ps.

View Article and Find Full Text PDF

We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage.

View Article and Find Full Text PDF

Estimation of optical absorption and scattering of a target is an inverse problem associated with quantitative photoacoustic tomography. Conventionally, the problem is expressed as two folded. First, images of initial pressure distribution created by absorption of a light pulse are formed based on acoustic boundary measurements.

View Article and Find Full Text PDF

Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data.

View Article and Find Full Text PDF
Article Synopsis
  • This paper explores combining PET and MRI imaging techniques to improve the reconstruction of PET data using the high spatial resolution of MRI.
  • It introduces a new prior that efficiently uses structural information to enhance image reconstruction, and operates without making assumptions about the correlation between the edge directions of PET and MRI images.
  • Results from simulated and real data show that this new prior provides better image quality by improving anatomical boundary clarity and having a superior balance between bias and standard deviation compared to existing methods.
View Article and Find Full Text PDF

Difference imaging aims at recovery of the change in the optical properties of a body based on measurements before and after the change. Conventionally, the image reconstruction is based on using difference of the measurements and a linear approximation of the observation model. One of the main benefits of the linearized difference reconstruction is that the approach has a good tolerance to modeling errors, which cancel out partially in the subtraction of the measurements.

View Article and Find Full Text PDF

Ultrasound-modulated optical tomography is an emerging biomedical imaging modality which uses the spatially localised acoustically-driven modulation of coherent light as a probe of the structure and optical properties of biological tissues. In this work we begin by providing an overview of forward modelling methods, before deriving a linearised diffusion-style model which calculates the first-harmonic modulated flux measured on the boundary of a given domain. We derive and examine the correlation measurement density functions of the model which describe the sensitivity of the modality to perturbations in the optical parameters of interest.

View Article and Find Full Text PDF

Positron Emission Tomography/Magnetic Resonance Imaging (PET/MR) scanners are expected to offer a new range of clinical applications. Attenuation correction is an essential requirement for quantification of PET data but MRI images do not directly provide a patient-specific attenuation map. Methods We further validate and extend a Computed Tomography (CT) and attenuation map (μ-map) synthesis method based on pre-acquired MRI-CT image pairs.

View Article and Find Full Text PDF

Quantitative photoacoustic tomography is an emerging imaging technique aimed at estimating optical parameters inside tissues from photoacoustic images, which are formed by combining optical information and ultrasonic propagation. This optical parameter estimation problem is ill-posed and needs to be approached within the framework of inverse problems. It has been shown that, in general, estimating the spatial distribution of more than one optical parameter is a nonunique problem unless more than one illumination pattern is used.

View Article and Find Full Text PDF

Diffuse optical tomography is a highly unstable problem with respect to modeling and measurement errors. During clinical measurements, the body shape is not always known, and an approximate model domain has to be employed. The use of an incorrect model domain can, however, lead to significant artifacts in the reconstructed images.

View Article and Find Full Text PDF

Attenuation correction is an essential requirement for quantification of positron emission tomography (PET) data. In PET/CT acquisition systems, attenuation maps are derived from computed tomography (CT) images. However, in hybrid PET/MR scanners, magnetic resonance imaging (MRI) images do not directly provide a patient-specific attenuation map.

View Article and Find Full Text PDF

Diffuse optical tomography is most accurate when an individual's MRI data can be used as a spatial prior for image reconstruction and for visualization of the resulting images of changes in oxy- and deoxy-hemoglobin concentration. As this necessitates an MRI scan to be performed for each study, which undermines many of the advantages of diffuse optical methods, the use of registered atlases to model the individual's anatomy is becoming commonplace. Infant studies require carefully age-matched atlases because of the rapid growth and maturation of the infant brain.

View Article and Find Full Text PDF

Dynamic magnetic resonance imaging (MRI) is used in multiple clinical applications, but can still benefit from higher spatial or temporal resolution. A dynamic MR image reconstruction method from partial (k, t)-space measurements is introduced that recovers and inherently separates the information in the dynamic scene. The reconstruction model is based on a low-rank plus sparse decomposition prior, which is related to robust principal component analysis.

View Article and Find Full Text PDF

The combination of functional and anatomical imaging technologies such as Positron Emission Tomography (PET) and Computed Tomography (CT) has shown its value in the preclinical and clinical fields. In PET/CT hybrid acquisition systems, CT-derived attenuation maps enable a more accurate PET reconstruction. However, CT provides only very limited soft-tissue contrast and exposes the patient to an additional radiation dose.

View Article and Find Full Text PDF